2015-2016 Permit Year Ventura Countywide Stormwater Quality Management Program Annual Report # Attachment E - TMDL Reports Volume I Camarillo County of Ventura Fillmore Moorpark Ojai Oxnard Port Hueneme Santa Paula Simi Valley Thousand Oaks Ventura Ventura County Watershed Protection District # Memorandum DATE: March 24, 2016 TO: Stakeholders Implementing TMDLs in the Calleguas Creek Watershed SUBJECT: Evaluation of Natural Attenuation Rates of Organochlorine Pesticides and PCBs in Calleguas Creek Watershed (OCP/PCB TMDL Special Study #3) Diana Engle, Ph.D and Zachary Helsley 2151 Alessandro Drive, Suite 100 Ventura, CA 93001 805.585.1835 Elizabeth Yin 2397 Shattuck Avenue, Suite 204 Berkeley, CA 94704 510.883.9873 # **Summary** The Total Maximum Daily Load for Organochlorine Pesticides, Polychlorinated Biphenyls, and Siltation in Calleguas Creek, Its Tributaries, and Mugu Lagoon (TMDL) was adopted by the Los Angeles Regional Water Quality Control Board (Regional Board) on July 7, 2005 and became effective on March 24, 2006. The TMDL was developed to address impairments to Calleguas Creek and its tributaries caused by organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs) in water, sediment, and fish tissue. These constituents are often referred to as legacy or historic pollutants due to their persistence in the environment despite enactment of regulations to restrict or ban their use. The TMDL established fish tissue concentration targets for total PCBs and a suite of 15 OCPs. Interim and final waste load allocations (WLAs) for POTW effluent and urban discharges, and load allocations (LAs) for agricultural discharges, were established for "Category 1" constituents (chlordane, DDT, DDD, DDE, toxaphene, PCBs and dieldrin). The TMDL included three required special studies. This memorandum has been prepared to satisfy the requirement for Special Study #3 (Requirement 16 in the implementation schedule). Special Study #3 has a deadline of ten years after the TMDL effective date (i.e., March 24, 2016) and is described in the TMDL as follows: ¹ Resolution No. R4-2005-010 Evaluate natural attenuation rates and evaluate methods to accelerate organochlorine pesticide and polychlorinated biphenyl attenuation and examine the attainability of wasteload and load allocations in the Calleguas Creek Watershed. Submittal of this memorandum to the Regional Board fulfills Requirement 16 of the implementation schedule for the TMDL for the following parties: - POTWs Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks; - Urban Dischargers Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark, and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency; - Agricultural Dischargers consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and - Other dischargers consisting of U.S. Department of Navy and Caltrans. As part of the special study, TMDL compliance monitoring data was examined to determine the degree to which final WLAs and LAs, and TMDL fish tissue targets have already been attained in the watershed. The results indicate that the final sediment allocations have already been attained for almost all combinations of reaches and constituents. However, 4,4'-DDE concentrations in sediment exceeded the final allocation in all reaches as recently as 2013 or 2014, depending on the reach. Final WLAs for all Category 1 constituents have been attained for the three POTWs that discharge to surface water. None of the fish tissue targets for Category 1 constituents are currently met throughout the watershed, with the exception of the target for dieldrin, which has been met since 2008. The subsequent steps taken for the special study can be summarized as follows: (1) time series analyses were performed to estimate dates by which allocations and fish tissue targets were likely to be met, (2) waterbody/constituent combinations were identified for which attainment of allocations and/or fish tissue targets may occur after the TMDL deadline, and (3) methods for accelerating attenuation in the latter cases were evaluated. The results of the special study support a prediction that attenuation of OCPs and PCBs is proceeding fast enough to lead to attainment of fish tissue targets (in freshwater reaches) and final sediment allocations by the TMDL deadline in 2026 in most cases. However, additional time may be needed to meet pertinent limits for 4,4'-DDE and toxaphene in fish tissue and sediment in Revolon Slough. Several agricultural sediment management BMPs are not completely adopted at present by growers in Revolon Slough watershed. Increased implementation of these BMPs may be the best route for accelerating attenuation of 4,4'-DDE and toxaphene in the receiving water sediment, but it is likely that additional time will still be needed to meet the limits. Control of sediment in agricultural discharges is more likely to enhance attenuation of 4,4'-DDE and toxaphene than detention basins for urban runoff. # **Background on TMDL Limits** During the development of the TMDL, constituents were assigned to one of two categories based on available monitoring data. Category 1 constituents were those for which exceedances were observed more frequently than allowed based on State Water Resource Control Board (SWRCB) listing guidance. Category 2 constituents were those for which exceedances were within allowable frequencies (and thus would not justify 303(d) listings). Among other limits, the TMDL established fish tissue concentration targets for constituents in both categories (total PCBs and a suite of 15 OCPs). However, the TMDL established interim and final waste load allocations (WLAs) for POTW effluent and urban discharges, and load allocations (LAs) for agricultural discharges, for the Category 1 constituents only: - chlordane (sum of alpha and gamma-chlordane) - 4,4'-DDT - 4,4'-DDD - 4,4′-DDE - dieldrin - PCBs - toxaphene. The allocations for urban dischargers and irrigated agriculture were established as concentrations in bottom sediment in receiving waters. The allocations for POTWs were established as concentrations in effluent. The TMDL schedule provided 20 years after the TMDL effective date for attainment of final WLAs and LAs (i.e., March 24, 2026). The TMDL fish tissue targets for Category 1 constituents are listed in Table 1. The fish tissue targets in the TMDL were derived from California Toxic Rule (CTR) human health criteria and were designed to protect humans from consumption of contaminated fish or other aquatic organisms. USEPA originally developed the CTR criteria for human consumption of fish by (1) determining OCP and PCB concentrations in fish tissue that would be protective of human health assuming a consumption rate of 6.5 g per day, and (2) converting fish tissue concentrations to water column concentrations using bioconcentration factors (BCFs). For the TMDL, BCFs were used to convert CTR human health (consumption) criteria back to fish tissue targets. Consequently, attainment of the fish tissue targets in the TMDL is functionally equivalent to attainment of the CTR water column human health criteria for consumption of aquatic organisms. - ² State Water Resources Control Board (SWRCB) 2004. Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List. September 30, 2004. Table 1. TMDL Fish Tissue Targets for Category 1 Constituents | Constituent | Target
(ng/g wet weight) | |---------------------------|-----------------------------| | 4,4'-DDE | 32 | | 4,4'-DDD | 45 | | 4,4'-DDT | 32 | | Toxaphene | 9.8 | | Chlordane (alpha + gamma) | 0.83 | | PCBs (sum of arochlors) | 5.3 | | Dieldrin | 650 | WLAs for POTWs were generated using procedures in the State Water Resources Control Board (SWRCB) 2005 Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California (SIP) using CTR criteria for aquatic life and human health. The final WLAs for POTWs were expressed as both daily maximum limits and monthly averages. The monthly averages are lower limits than the daily maxima and were used for data screening in this study; they are presented in Table 2. Table 2. Final Monthly Average LAs for POTWs | LA (ng/L) | |-----------| | 0.59 | | 0.84 | | 0.59 | | 0.16 | | 0.59 | | 0.17 | | 0.14 | | | Final sediment-based allocations are presented in Table 3. The technical approach used to develop the TMDL relied on an assumption that the relationship between OCP or PCB concentrations in fish and sediments is linear. The sediment-based allocations were designed by determining for each Category 1 constituent the greater percent reduction in baseline sediment concentrations that would be necessary to result in attainment of either the fish tissue target (based on CTR criteria for protection of human health consumption, as explained above) or water column targets (the latter based on CTR chronic criteria for protection of aquatic life). The resulting sediment-based allocations were thus intended to ensure attainment of the TMDL fish tissue targets, the underlying CTR water column criteria human health (consumption), and the CTR water column criteria for protection of aquatic life (chronic criteria). The reliance on sediment allocations to meet targets in several media is appropriate for the OCPs and PCBs, which are predominantly particle bound in the environment. Owing to the inadequacy of data sets for Category 1 constituents other than 4,4′-DDE at the time of TMDL development, and considering the refractory nature of 4,4′-DDE, the percent reductions were conservatively developed using data for 4,4′-DDE and applied to the baseline concentrations for other constituents to derive
their allocations. Table 3. Final Sediment WLAs for MS4s and LAs for Agricultural Dischargers (ng/kg) | Constituent | Mugu Lagoon | Revolon
Slough | Calleguas Creek, Arroyo Las
Posas, Arroyo Simi, and Conejo
Creek | |---------------------------|-------------|-------------------|--| | 4,4'-DDE | 2,200 | 1,400 | 1,400 | | 4,4'-DDD | 2,000 | 2,000 | 2,000 | | 4,4'-DDT | 300 | 300 | 300 | | Toxaphene | 360,000 | 1,000 | 600 | | Chlordane (alpha + gamma) | 3,300 | 900 | 3,300 | | PCBs (sum of congeners) | 180,000 | 130,000 | 120,000 | | Dieldrin | 4,300 | 100 | 200 | ## **Sources of Data** Bioaccumulation of legacy pollutants in aquatic organisms, and their predators, is the principal beneficial use impairment addressed by the TMDL. Consequently, the fish tissue targets are the most closely linked to the protection of beneficial uses. Owing to (1) the functional equivalency of the fish tissue targets and pertinent CTR water column criteria, and (2) the design of the sediment-based allocations (designed to result in attainment of fish tissue targets), the time series analyses for this study were conducted using fish tissue and bottom sediment data sets only. POTW effluent data was screened using final monthly average WLAs for effluent, but time series analysis was not conducted. The sources of data used in the study are listed in Table 4. The fish data set includes data considered during the development of the TMDL, plus additional data collected since then, primarily through TMDL compliance monitoring. The distribution of fish tissue samples by individual fish species across time is presented in Table 5. Table 4. Sources of Data Used in the Study | Monitoring Program/ Data Source | Range of Sa | ample Dates | |---|-------------|-------------| | Fish Tissue | | | | Toxic Substances Monitoring Program | 4/30/1985 | 8/9/2000 | | CCW TMDL Work Plan Monitoring | 12/16/2003 | 8/26/2004 | | Bay Protection and Toxic Clean Up Program | 10/5/1992 | 10/5/1992 | | CCW TMDL Monitoring Program | 8/5/2008 | 8/11/2015 | | Sediment | | | | Toxic Substances Monitoring Program | 6/2/1992 | 6/4/1992 | | Bay Protection and Toxic Clean Up Program | 6/19/1996 | 2/6/1997 | | Calleguas Creek Characterization Study | 11/5/1998 | 8/20/2004 | | Hill Canyon Waste Water Treatment Plant NPDES | 2/1/1993 | 8/2/1995 | | United States Navy | 1/4/1994 | 1/7/2005 | | RWQCB Database | 6/18/1996 | 6/19/1996 | | Monitoring Program/ Data Source | Range of Sa | ample Dates | |---------------------------------|-------------|-------------| | Simi Valley Sanitation Division | 12/6/1993 | 12/6/1993 | | State Mussel Watch Program | 1/29/1989 | 9/10/1992 | | CCW TMDL Work Plan Monitoring | 2/25/2004 | 2/26/2004 | | CCW TMDL Monitoring Program | 8/5/2008 | 8/20/2014 | | POTW Effluent | | | | CCW TMDL Monitoring Program | 2008 | 2014 | | NPDES Permit-Related Monitoring | 2008 | 2014 | # **Current Conditions** The reaches contained in the Calleguas Creek watershed are illustrated in Figure 1. Binning data by combining reaches was necessary to conduct several of the analyses. For initial screening and (eventual) time series analysis, fish data was binned into the following three subwatersheds: - Combined Calleguas Creek Subwatersheds (Reaches 2, 3, 6, 7, 8, 9A, 9B, 10, 11, 12, 13) - Revolon Slough Subwatershed (Reaches 4, 5) - Mugu Lagoon (Reach 1) Figure 1. Reaches in Calleguas Creek Watershed Table 5. Numbers of Fish Tissue Samples in Which One or More TMDL Constituents were Measured, by Year. Sample Sizes are for All Reaches Combined. | Species
(Common
name) | Avail Info.
on Tissue
Type | Fish
Length
(mm) | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2002 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |-----------------------------|----------------------------------|------------------------| | | • | • | | | | | | | | | | Fre | shw | ater | Rea | ches | 5 | | | | | | | | | | | | | | | , | | | Goldfish | Fillet [a] | | 4 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | Fillet w/
skin | 8 | | | Composite,
Fillet w/
skin | 2 | | | Whole [a] | 1 | | | | | | | | | | | | | Fathead
Minnow | Fillet [a] | | | | | | | | | | | 1 | Whole | 1 | | | | | | | | | | | | | | Composite,
Whole | 13 | | | Whole [a] | | | | | | | | 1 | 3 | 2 | 2 | | | 3 | | | | | | 1 | | | | | | | | | | | | | | Carp | Composite | 6 | 2 | | | | | · | Composite, fillet | 3 | | | | | | | | | | Fillet w/
skin | 1 | 8 | | | | | | 8 | | | Composite,
fillet
w/skin | 1 | | | | | | | | | Muscle [a] | 1 | 9 | | | | | | | | | | | | | | Whole | 8 | 1 | | | | | 5 | | | Composite, whole | 1 | | | | | | | | | Composite, whole | 75-90 | 1 | | | | | | | | | Brown
Bullhead | Fillet [a] | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | | Bullhead | Fillet [a] | | 1 | Species
(Common
name) | Avail Info.
on Tissue
Type | Fish
Length
(mm) | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |--------------------------------------|---|------------------------| | California
Killifish | Whole [a] | 1 | | | | | | | | | | | | | | Arroyo Chub | | 0-85 | 2 | | | | | | | | | 86-112 | 2 | | | | | | | | Composite | 9 | | | | | | | | | Composite | 29-51 | 3 | | | | | | | | | Composite | 43-60 | 3 | | | | | | | | | Composite | 53-97 | 3 | | | | | | | | | Composite | 65-90 | 3 | | | | | | | | | Whole | 1 | | | | | | | | Whole [a] | | | | | | | | | | | | | | | 1 | 1 | 3 | | | 4 | 11 | | | | | | | | | | | | | | Composite,
whole | 50-70 | 3 | | | | | | | | | Black
Bullhead | Fillet [a] | | | | | | | | | | 1 | 2 | | | | | | 1 | | | | | | | | | | | | | | | 1 | | Damicaa | Fillet w/
skin | 1 | | | | | | 2 | | | Muscle [a] | 5 | 9 | | | | | | | | | | | | | | Whole | 1 | | | | | | | | Green
Sunfish | Fillet [a] | | | | | | | 1 | 1 | Muscle [a] | 2 | 6 | | | | | | | | | | | | | Large Mouth
Bass | Composite | 1 | | | | | Whole | 5 | | Mosquitofish | Whole [a] | | | | 1 | | | | 1 | | | | | | | 2 | Composite | 130-
160 | 3 | | | | | | | | | Arroyo Chub
and Fathead
Minnow | Mixed
Species
Composite,
whole | 2 | | | | | | | | | | | | | Carp and
Fathead
Minnow | Mixed
Species
Composite | 1 | | | | Species
(Common
name) | Avail Info.
on Tissue
Type | Fish
Length
(mm) | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |---|----------------------------------|------------------------| | Carp,
Fathead
Minnow, and
Green
Sunfish | Mixed
Species
Composite | 1 | | | | Goldfish and
Large Mouth
Bass | Mixed
Species
Composite | 1 | | | | | | | | | | | | | | | | | Mug | u La | goo | n | | | | | | | | | | | | | | | | | | | Bait Fish | Composite,
whole | 50-80 | 3 | | | | | |
| | | Barred
Sandbass | Whole | 6 | | Topsmelt | Whole [a] | | | | | | | | | 1 | 28 | | Flat Fish | Fillet | 1 | | | | | | | | | Grass
Rockfish | Whole | 10 | | Longjaw
Mudsucker | Fillet [a] | | | | 1 | Shiner Perch | Fillet [a] | | | | | 1 | Whole | 1 | | | | | | | 1 | | | [a] | | | | | | | | | 1 | Gray
Smoothound
Shark | | | | | | 1 | 1 | 1 | | 1 | 1 | 1 | | | 1 | | | | | | | | | | | | | | | | | | | [[]a] Data for these samples contained an unexplained field entitled "CompNo" which is populated with up to a double digit number. This may signal that the sample was a composite. As is evident from Table 5, useful time series can only be constructed for a few species of fish. The record from the pre-TMDL period is sporadic, and it has not been possible to reliably catch fish of any species during successive compliance monitoring events since 2008. Many species of fish appear only once in the record extending up to 2015. A time series including older samples (e.g., 1980s-1990s) and more recent samples (e.g., 2000 and onward) is not available for any of the fish species obtained to date in Mugu Lagoon. Time series graphs combining the data for all species are provided in Attachment 1 for each (subwatershed) x (constituent) combination.³ The TMDL tissue target is displayed in each graph as a broken red line. The most recent sampling events for fish conducted through the CCW TMDL Monitoring Program occurred in summer 2015. Further generalizations about the status of fish tissue in 2015 are as follows: - 4,4'-DDE: Most fish tissue samples exceeded the TMDL target in all three subwatersheds. - 4,4'-DDD: Most samples in Calleguas Creek Subwatershed and Mugu Lagoon were below the TMDL target. Several samples exceeded the target in Revolon Slough subwatershed. - 4,4'-DDT: No samples exceeded the target in Calleguas Creek Subwatershed. The majority of samples from Mugu Lagoon were below the target. Several samples exceeded the target in Revolon Slough Subwatershed. Toxaphene: Most samples exceeded the target in all three subwatersheds. Chlordane: Most samples exceeded the target in all three subwatersheds. PCBs: Some samples were below the target in Calleguas Creek subwatershed. Most samples were above the target in Revolon Slough subwatershed and Mugu Lagoon. Dieldrin: The target was met throughout the watershed. Sediment monitoring data from the CCW TMDL Monitoring Program (beginning in 2008) was screened to determine if, and where, the final sediment-based allocations have already been attained in the watershed. Results are presented in Table 6. The results indicate that the final sediment allocations have already been attained for almost all combinations of reaches and constituents. PCBs, dieldrin, and chlordane have not been detected in sediment in any of the sampled reaches since 2010 or earlier. Toxaphene has rarely been detected in sediment since the TMDL was adopted, and exceedances of the final sediment allocation for toxaphene in more than one consecutive sampling event have only been documented in Revolon Slough. The final sediment allocation for 4,4'-DDT has been met throughout the watershed except for a recent exceedance in Arroyo Las Posas (preceded by non-detects for several years) and two recent exceedances in Revolon Slough (also preceded by non-detects for several years). The final sediment allocation for 4,4'-DDD has been met throughout the watershed except in Mugu Lagoon. 4,4'-DDE concentrations in sediment exceeded the final allocation in all reaches as recently as 2013 or 2014, depending on the reach. POTW effluent data collected since 2008 was screened to determine if the final effluent-based WLAs have already been attained for the three POTWs that discharge to surface water. Results ³ Time series graphs for dieldrin are not presented because there have been no detections in fish tissue since 2008, and no further analysis of dieldrin data was performed after the initial screening. are presented in Table 7. In brief, except for a few sporadic exceedances, the final POTW WLAs have been met since 2008. For this reason, POTW effluent was not further evaluated in the study. Table 6. Year of Most Recent Sediment Sample Exceeding the Final Allocation [a] | Reach | Mugu | Lagoon | | | | Revo-
lon
Slough | Calle-g
Creek | uas | Conejo
Creek | Arroyo
Las
Posas | Arroyo
Simi | |--------------------|----------|----------|-----------|-----------|-----------|------------------------|------------------|---------|-----------------|------------------------|----------------| | Monitoring
Site | 01_BPT_3 | 01_BPT_6 | 01_BPT_14 | 01_BPT_15 | 01_BPT_74 | 04_WOOD | 02_PCH | 03_UNIV | 9B_ADOLF | SIMOS_90 | 07_НІТСН | | 4,4'-DDE | 2014 | 2014 | 2014 | 2014 | 2014 | 2013 | 2014 | 2013 | 2013 | 2014 | 2014 | | 4,4'-DDD | [b] | 2008 | 2014 | 2008 | 2008 | 2014 | 2008 | [c] | [c] | 2013 | [b] | | 4,4'-DDT | [b] | 2008 | 2008 | 2008 | 2008 | 2014 | [c] | [b] | [c] | 2014 | 2008 | | Toxaphene | [c] | [c] | [c] | [c] | [b] | 2013 | [c] | 2013 | 2009 | [c] | [c] | | Chlordane [d] | [c] | [c] | [c] | [c] | 2008 | 2010 | [c] | [c] | [c] | [c] | [c] | | PCBs [e] | [c] | Dieldrin | [c] [[]a] Represents compliance monitoring 2008 through August, 2014. Mugu Lagoon sites were sampled in 2008, 2011, and 2014. Other sites were sampled annually. Table 7. Exceedances of the Final Monthly Average WLA for POTWs [a] | | Simi Valley Wo | СР | Hill Canyon W | WTP | Camarillo WW | TP | |-----------|--|-----------------------------------|--|-----------------------------------|--|--------------------------------| | | Exceed-
ances
(Total
Samples) | Most
Recent
Exceed-
ance | Exceed-
ances
(Total
Samples) | Most
Recent
Exceed-
ance | Exceed-
ances
(Total
Samples) | Most Recent
Exceed-
ance | | 4,4'-DDE | 3 (25) | 2015 | 0 (28) | | 3 (35) | 2012 | | 4,4'-DDD | 1 (25) | 2010 | 0 (28) | | 1 (28) | 2008 | | 4,4'-DDT | 1 (25) | 2012 | 0 (27) | | 1 (35) | 2008 | | Toxaphene | 1 (25) | 2012 | 0 (28) | | 0 (28) | | | Chlordane | 0 (24) | | 0 (20) | | 0 (24) | | | PCBs [b] | 1 (26) | 2012 | 0 (28) | | 0 (28) | | | Dieldrin | 0 (24) | | 0 (28) | | 0 (28) | | [[]a] Represents quarterly monitoring, 2008-2015. # **Approach** An approach was developed to compare estimated time frames of attainment of fish tissue targets with their associated final sediment-based allocations. The approach can be simplified as follows: [[]b] Concentrations have been lower than the final WLA/LA in all samples obtained since compliance monitoring began in 2008. [[]c] Constituent has not been detected in sediment samples since compliance monitoring began in 2008. [[]d] Sum of alpha and gamma chlordane [[]e] Sum of congeners [[]b] Sum of arochlors - Step 1. Consider whether pertinent final limits are already met. - Step 2. Develop approach to compare attenuation rates for fish tissue and sediment where final limits have not already been met. - Step 3. Identify specific statistical trend analyses to perform on fish and/or sediment data. - Step 4. Identify implications for TMDL revision, if any. At the outset of the study, several scenarios involving attenuation rates were contemplated. Several scenarios are described in Table 8 to illustrate the range of potential study outcomes for individual constituents. Table 8. Examples of Potential Outcomes for Individual Constituents and their Implications | Scenario | | Implication | |------------|--|--| | Scenario 1 | Fish tissue targets have been met.
Final WLAs/LAs are already met. | TMDL limits for fish and sediment have been attained early. | | Scenario 2 | Neither fish tissue targets nor final WLA/LA are met. Available attenuation rates for both media suggest limits will be met by 2026. | TMDL limits for fish and sediment will be likely attained by 2026. | | Scenario 3 | Fish tissue target is not met but attenuation rates suggest it will be met by 2026. Final WLA/LA already met. | TMDL limits for fish and sediment will be likely attained by 2026. | | Scenario 4 | Neither fish tissue targets nor final WLA/LA are met. Available attenuation rates for both media suggest limits will be met after 2026. | No reason to believe that underlying relationship between sediment and fish tissue is not linear. However, more time is needed for natural attenuation to reach the TMDL limits. | | Scenario 5 | Fish tissue targets have already been met. Final WLA/LAs have not been met and attenuation rates for sediment suggest final WLA/LA not attainable by 2026. | WLA/LA may be overly conservative. Relationship between sediment and fish tissue concentrations may not be linear. WLA/LAs could be revised upward. | | Scenario 6 | Fish tissue target is not met and attenuation rates suggest target will not be met by 2026. Final WLA/LA is already met. Constituent still detected in sediment. | WLA/LA for the constituent may be too high. Relationship between sediment and fish tissue concentrations may not be linear. WLA/LAs may need revision
(downward) | | Scenario 7 | Fish tissue target is not met and attenuation rates are unknown or suggest target will not be met by 2026. Constituent not detected in sediment. | Attenuation in sediment is complete. No actions available to enhance attenuation rates in fish. | Following the general approach described above, and using the Current Condition information presented above for fish tissue and sediment data in individual reaches, a specific data analysis approach was developed for each constituent. The specific approaches are explained in detail in Table 9. Table 9. Details of Approach Taken to Evaluate Attenuation Rates in Fish and Sediment | | Step 1. Cons | sider Whether Pertinent Fina
Already Met | al Limits are | Step 2. Develop Approach To Compare | Step 3. Identify Specific | | |--------------------------|--|---|-----------------------------------|---|--|--| | | TMDL Fish
Tissue Target
already met in
all reaches? | Sediment WLA/LA met?
(MS4 and Ag) | Effluent WLA met? (POTWs) | Attenuation Rates for Fish Tissue and Sediment | Fish [e] | Sediment | | 4,4'-DDE | No | No exceedances in all reaches as recently as 2013 or 2014, depending on reach | Mostly [a] | Fish Tissue: Identify fish species for which attenuation curves can be constructed. If | | Attenuation rates
evaluated in all
segments | | 4,4'-DDD | No | Mostly one exceedance in Mugu Lagoon in 2014 [b] | Yes [c] | Attenuation rates | Attenuation rate evaluated in Mugu Lagoon | | | 4,4'-DDT | No | Mostly recent exceedance in Arroyo Las Posas (2014) and Revolon Slough (2013, 2014) | Yes [c] | Sediment: Construct attenuation curves, if possible, for sediment in reaches not yet meeting the final WLA. Compare predictions for attainment of fish target and sediment WLA (in affected reaches) with the TMDL deadline of March | evaluated for three species of fish (goldfish, minnows and carp) in two subwatersheds: Revolon Slough | Attenuation rates
evaluated in
Arroyo Las Posas
and Revolon
Slough | | Toxaphene | No | Mostly recent exceedances in Revolon Slough in successive years | Yes | 2026. | Subwatershed (Reaches 4 & 5) Calleguas Creek Subwatershed (Reaches 2, 3, 6, 7, | Attenuation rate evaluated in Revolon Slough | | Chlordane
and
PCBs | No | Yes
not detected since 2008 | Yes [d] | Fish Tissue: Identify fish species for which attenuation curves can be constructed. If possible, predict year of future attainment of TMDL target for those species. Determine whether fish tissue likely to meet target by TMDL deadline of March 2026. | 8, 9A, 9B, 10) | none | | | | | | Sediment: No further analysis of sediment data is necessary (Constituents not detected in sediment) | | | | Dieldrin | Yes | Yes
not detected since 2008 | Yes
not detected
since 2008 | No further analysis necessary | none | none | [[]a] Simi and Camarillo POTWs each have 3 exceedances since TMDL adopted, most recently in 2015 (Simi) and 2012 (Camarillo) [[]b] One exceedance in Arroyo Las Posas in 2014 was preceded by non detects and samples < WLA going back to 2004. Reach was considered to be meeting the WLA. [[]c] One exceedance at Simi WQCP in 2012, none since [[]d] One exceedance (of PCB WLA) at Simi WQCP in 2012, none since [[]e] Attenuation rates were not sought using data from Mugu Lagoon owing to (1) insufficient data sets for individual species, and (2) uncertain site fidelity for the estuarine and marine species acquired. See text for more detail. ### **Calculation of Attenuation Rates** Most of the fish sampled in Mugu Lagoon are not obligate estuarine species. They are primarily marine species that are expected to spend significant amounts of time, or most of their time, outside the lagoon in open coastal habitat (e.g., reefs or kelp beds) and are likely to have large individual geographic ranges. Grass rockfish is the only species recently caught during a sampling event in Mugu Lagoon that is considered to have limited movement after hatching - however, even the grass rockfish is not characteristic of tidal channels or flats, occupies water up to 150 feet deep, and is associated with rocky reefs or kelp forest as adults. Owing to a lack of site fidelity, it is not clear that concentrations of pollutants in fish caught in Mugu Lagoon represent exposure to contaminated sediment in Mugu Lagoon. For this reason, the status of fish tissue from Mugu Lagoon was not expected to yield useful information about the attenuation rate of OCPs and PCBs in the watershed, and calculation of attenuation rates was not attempted with the data sets for any of the individual species from Mugu Lagoon. As previously noted, however, time series graphs including all fish samples from Mugu Lagoon for all of the Category 1 constituents were included in Attachment 1. Time series for individual species from the freshwater reaches were inspected to identify opportunities to derive attenuation rates using regression. In order to obtain sufficient data to attempt construction of attenuation curves, data for individual species was pooled into two bins, previously defined (Calleguas Creek and Revolon Slough Subwatersheds). Considerations that guided selection of fish species were (1) availability of both older data (i.e., pre-2000) and data from the most recent sampling events (i.e., 2014-2015), and (2) the likelihood of being able to sample the species with reasonable regularity in several reaches over the next decade to provide useful information about TMDL target attainment. The latter consideration ruled out Arroyo Chub from the analysis because it is no longer legal to sample them. Ultimately, the time series for goldfish (Carassius auratus) and fathead minnow (Pimephales promelas) emerged as the most viable for producing attenuation rates. The time series for common carp (Cyprinus carpio) were very short (no pre-2000 samples), but the species was included in regression analysis because it is a bottom feeder recommended by USEPA for use in fish consumption safety screening.⁴ Preliminary inspection of data for carp fillets and whole carp indicated that although concentrations of legacy pollutants were higher in whole fish than in fillets (as expected), only the whole fish data were likely to yield information about attenuation rates. Following the specific approaches identified in Table 9, attenuation rates were sought for goldfish (fillets), fathead minnow (whole fish), and carp (whole fish) for every Category 1 constituent except for dieldrin. For time series evaluations, sediment data was binned into "segments" comprising one or more reaches, as follows: - Arroyo Las Posas/Simi (Reaches 6, 7) - Lower Conejo Creek (Reaches 9A, 9B, 10) - Calleguas Creek (Reaches 2, 3) OCP/PCB TMDL Special Study #3 ⁴ USEPA (2000) Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 2. Risk Assessment and Fish Consumption Limits. Third Edition. EPA 823-B-00-008, November 2000. - Revolon Slough (Reaches 4, 5) - Mugu Lagoon (Reach 1) Attenuation rates for sediment were not sought for every combination of constituent and segment. Instead, current conditions were used to guide selection of a subset of cases for regression, as identified in Table 9. As a result, attenuation rates were sought for the following cases: ``` 4,4'-DDE - all segments4,4'-DDD - Mugu Lagoon4,4'-DDT - Arroyo Las Posas/Simi and Revolon SloughToxaphene - Revolon Slough ``` Attenuation rates were sought by fitting an exponential decay function to the data in the following form: 5, 6, 7 ``` y=Ae^{rt} where ``` y = concentration in fish tissue or sediment, A = constant, r =exponential decay rate, and t = time. Because a variety of MDLs were reported in the historic data - often higher in older samples - a very conservative approach was taken by setting non-detects equal to the MDLs. Not all of the cases selected for regression resulted in statistically significant decay rates. The resulting exponential decay functions with statistically significant ($p \le 0.10$) and borderline significant (0.10 < $p \le 0.13$) decay rates are presented in Table 10. Graphs were produced for every case in which regression was performed. The series of graphs for 4,4'-DDE are presented below in Figures 2-6. Graphs for all other cases in which regression was performed (including plain time series plots for cases in which statistically significant decay rates were not obtained) are provided in Attachment 2. In the graphs, the TMDL tissue target or final sediment allocation is represented by a dashed horizontal red line. Detected values are indicated by circles; non-detected samples are represented by crosses. For cases in which regression resulted in a statistically significant decay rate, the attenuation function is displayed on the graph using a blue line. Variation in the scale of the x-axis should be noted. In some cases, the y-axis is displayed using a log scale. _ ⁵ Statistical analyses were performed in R version 3.1.2. (R Development Core Team, Austria) through the RStudio interface (RStudio Team, Boston, MA) ⁶ Prior to regression, sample dates were converted from Gregorian calendar dates (mm-dd-yyyy) to astronomical Julian Day Numbers. Astronomical Julian Date is a continuous series of days and fractions of days since noon Universal Time on January 1, 4713 BCE. ⁷ Julian Date Converter, The United States Naval Observatory (USNO).
http://aa.usno.navy.mil/data/docs/JulianDate.php Figure 2. Attenuation curves for 4,4'-DDE in goldfish (upper panel) and fathead minnow (lower panel) in Calleguas Creek Subwatershed. TMDL target is displayed as a broken red line. Figure 3. Attenuation curves for 4,4'-DDE in goldfish (upper panel) and fathead minnow (lower panel) in Revolon Slough Subwatershed. TMDL target is displayed as a broken red line. # DDE in Carp: Revolon Slough Subwatershed Figure 4. Time series for 4,4'-DDE in carp in Calleguas Creek subwatershed (upper panel) and Revolon Slough subwatershed (lower panel; with attenuation curve). TMDL target is displayed as a broken red line. Figure 5. Time series for 4,4'-DDE in sediment in Arroyo Simi/Las Posas (upper panel) and Calleguas Creek (lower panel; with attenuation curve; note log scale on y-axis). TMDL target is displayed as a broken red line. Sample Date 1,000 ~ ## **DDE in Sediment: Revolon Slough** # DDE in Sediment: Mugu Lagoon 300,000 200,000 100 Figure 6. Time series for 4,4'-DDE in sediment in Revolon Slough (upper panel; note log scale on yaxis) and Mugu Lagoon (lower panel; with attenuation curve;). TMDL target is displayed as a broken red line. Sample Date Table 10. Exponential Decay Functions for Fish Tissue and Sediment | Constituent | Reaches | Matrix | Exponential Decay Function | R2 | X-axis Scalar [a] | P value | |-------------|-------------------------------|----------------|-----------------------------------|------|-------------------|---------| | 4,4'-DDE | Calleguas Creek Subwatershed | Goldfish | $y = 1,788e^{-0.0004122x}$ | 0.88 | JDN-(2,446,186) | < 0.001 | | | | Fathead Minnow | $y = 1,562e^{-0.0002735x}$ | 0.49 | JDN-(2,448,427) | < 0.001 | | | Revolon Slough Subwatershed | Goldfish | $y = 3,161e^{-0.000578x}$ | 0.86 | JDN-(2,446,186) | 0.008 | | | | Fathead Minnow | $y = 3,530e^{-0.000143x}$ | 0.77 | JDN-(2,449,159) | 0.004 | | | | Carp | $y = 6,264e^{-0.000744x}$ | 0.51 | JDN-(2,455,078) | 0.048 | | | Calleguas Creek | Sediment | $y = 30,333e^{-0.000304x}$ | 0.36 | JDN-(2,447,773) | < 0.001 | | | Lower Conejo Creek | Sediment | $y = 14,458e^{-0.000224x}$ | 0.18 | JDN-(2,449,020) | 0.031 | | | Revolon Slough | Sediment | $y = 132,016e^{-0.000209x}$ | 0.13 | JDN-(2,447,556) | 0.078 | | 4,4'-DDD | Calleguas Creek Subwatershed | Goldfish | $y = 101e^{-0.000346x}$ | 0.82 | JDN-(2,446,186) | < 0.001 | | | | Fathead Minnow | $y = 99e^{-0.000336x}$ | 0.54 | JDN-(2,448,427) | < 0.001 | | | Revolon Slough Subwatershed | Goldfish | $y = 361e^{-0.000681x}$ | 0.73 | JDN-(2,446,186) | 0.030 | | | | Fathead Minnow | $y = 348e^{-0.000187x}$ | 0.80 | JDN-(2,449,159) | 0.003 | | | Mugu Lagoon | Sediment | $y = 10,751e^{-0.000202x}$ | 0.15 | JDN-(2,447,773) | <0.001 | | 4,4'-DDT | Calleguas Creek Subwatershed | Goldfish | $y = 71e^{-0.000334x}$ | 0.83 | JDN-(2,446,186) | <0.001 | | | | Fathead Minnow | $y = 95e^{-0.000516x}$ | 0.83 | JDN-(2,448,427) | <0.001 | | | | Carp | $y = 93e^{-0.001850x}$ | 0.35 | JDN-(2,454,685) | 0.033 | | | Revolon Slough Subwatershed | Goldfish | $y = 336e^{-0.000483x}$ | 0.50 | JDN-(2,446,186) | 0.119 | | | | Fathead Minnow | $y = 272e^{-0.000442x}$ | 0.92 | JDN-(2,449,159) | <0.001 | | | Arroyo Simi/Arroyo Las Posas | Sediment | $y = 4,230e^{-0.000166x}$ | 0.16 | JDN-(2,447,773) | 0.037 | | | Revolon Slough/Beardsley Wash | Sediment | $y = 51,534e^{-0.000399x}$ | 0.53 | JDN-(2,449,159) | <0.001 | | Toxaphene | Calleguas Creek Subwatershed | Goldfish | $y = 406e^{-0.000309x}$ | 0.80 | JDN-(2,446,186) | <0.001 | | | | Fathead Minnow | $y = 2,347e^{-0.000571x}$ | 0.74 | JDN-(2,448,427) | <0.001 | | | Revolon Slough Subwatershed | Goldfish | $y = 3,492e^{-0.000742x}$ | 0.89 | JDN-(2,446,186) | 0.005 | | Constituent | Reaches | Matrix | Exponential Decay Function | R2 | X-axis Scalar [a] | P value | |--------------------|-------------------------------|----------------|-----------------------------------|------|-------------------|---------| | | | Fathead Minnow | $y = 3,135e^{-0.000349x}$ | 0.34 | JDN-(2,449,159) | 0.131 | | | | Carp | $y = 9,668e^{-0.001269x}$ | 0.51 | JDN-(2,455,078) | 0.071 | | | Revolon Slough/Beardsley Wash | Sediment | $y = 206,902e^{-0.000269x}$ | 0.39 | JDN-(2,447,556) | 0.008 | | Chlordane | Calleguas Creek Subwatershed | Goldfish | $y = 8e^{-0.000154x}$ | 0.60 | JDN-(2,446,186) | <0.001 | | (alpha +
gamma) | | Fathead Minnow | $y = 23e^{-0.000253x}$ | 0.57 | JDN-(2,448,427) | <0.001 | | 3 , | | Carp | $y = 25e^{-0.000857x}$ | 0.22 | JDN-(2,455,078) | 0.123 | | | Revolon Slough Subwatershed | Goldfish | $y = 69e^{-0.000789x}$ | 0.87 | JDN-(2,446,186) | 0.007 | | | | Fathead Minnow | $y = 60e^{-0.000128x}$ | 0.64 | JDN-(2,449.159) | 0.017 | [[]a] JDN refers to astronomical Julian Day number. To avoid rounding errors during regression associated with large x values, each regression was performed after setting the first sample date in each time series, initially expressed as true JDN, to day 0. Consequently the X scalar in the exponential decay functions are equal to true JDN minus the JDN of the first sample date (indicated in parentheses in the table). # **Predictions for Target Attainment** By setting "y" equal to the pertinent TMDL limit and solving for "x", the exponential decay functions in Table 10 were used to estimate the date of attainment of fish tissue targets and sediment allocations. In Table 11, the resulting estimated attainment dates (expressed by year) are combined with pertinent information regarding where and when sediment allocations have already been met. The dates in the tables resulting from decay functions are properly viewed as coarse estimates, and are only used herein to identify cases in which it seems likely that the TMDL target may not be met by the deadline of 2026. Summaries of outcomes for individual constituents are provided below. #### 4,4'-DDE Statistically significant attenuation curves were obtained for goldfish, fathead minnow, and carp in Revolon Slough subwatershed, and for goldfish and fathead minnow in Calleguas Creek subwatershed. Statistically significant attenuation curves were obtained for sediment in three segments. The results suggest that the TMDL target was already attained by goldfish in both freshwater subwatersheds, but that more time is likely needed after the TMDL deadline for other fish to meet the tissue target and sediment concentrations to meet the final allocation in Revolon Slough. 4,4'-DDD Statistically significant attenuation curves for goldfish and minnows were obtained in both the Calleguas Creek and Revolon Slough subwatersheds, and suggest that the TMDL target has already been attained or will be attained by the TMDL deadline for those two species. Statistically significant attenuation curves were not obtained for carp, however only 1 out of 10 samples of carp tissue in Calleguas Creek subwatershed, and only 4 out of 9 samples of carp tissue from the Revolon Slough subwatershed, have been above the TMDL target since 2010. Recent data for other fish species shows that the majority of fish sampled in Mugu Lagoon and the Calleguas Creek subwatershed met the DDD target in the most recent (2015) field event (Attachment 1); carp and fathead minnow were the only species caught in Revolon Slough in 2015. The final sediment allocations are already met throughout the watershed except in one segment (Mugu Lagoon). However, the attenuation curve obtained for sediment in Mugu Lagoon suggests that the final WLA/LA will be met by the TMDL deadline. In summary, the results of the time series analysis and other supporting data suggest that the fish tissue target and final sediment allocations will both be met by the TMDL deadline. #### 4.4'-DDT Statistically significant attenuation curves for goldfish, fathead minnow, and carp were obtained for the Calleguas Creek subwatershed, and for goldfish and fathead minnow in Revolon Slough subwatersheds, and suggest that the TMDL target has already been attained by those species in those reaches. It is not possible to be sure that carp tissue would meet the target by 2026 in Revolon Slough subwatershed, however a downward trend in concentrations is evident from the time series between 2009-2015. As was true for 4,4'-DDD, the majority of samples from other fish species obtained in Mugu Lagoon and Calleguas Creek subwatersheds met the target in the most recent (2015) field event (Attachment 1), and only a few samples of carp and black bullhead exceeded the target in 2015 in Revolon Slough. The
final sediment allocations are already met throughout the watershed except in one segment (Revolon Slough). However, the attenuation curve obtained for sediment in Revolon Slough suggests that the final allocations will be met by the TMDL deadline. In summary, the results of the time series analysis, together with other supporting data, suggest that both the fish tissue target and final sediment allocation will be met by the TMDL deadline. #### **TOXAPHENE** Statistically significant attenuation curves for goldfish, fathead minnow, and carp were obtained for the Calleguas Creek subwatershed, and for goldfish and fathead minnow in Revolon Slough subwatershed. Statistically significant attenuation curves were obtained for sediment in Revolon Slough (other reaches already meet the final WLA/LA). As was true for 4,4'-DDE, the results suggest that the TMDL target for toxaphene was already attained for goldfish in both freshwater subwatersheds, but that more time is likely needed after the TMDL deadline for other fish to meet the target in Revolon Slough and for sediment concentrations to reach the final allocation in Revolon Slough. #### **CHLORDANE** Statistically significant attenuation curves were obtained for goldfish, fathead minnow, and carp in Calleguas Creek subwatershed, and for goldfish and fathead minnow in Revolon Slough subwatershed. The results suggest that time beyond the TMDL deadline might be needed for fathead minnow to reach the target in the freshwater reaches. The particulate fraction (>2 μ m) accounts for an average of 97% of total chlordane in water samples, so the exposure pathways for fish and other aquatic organisms are dependent on pollutant mass in sediment. However, chlordane has not been detected in sediment in the watershed (including in Mugu Lagoon) since compliance monitoring began in 2008. #### **PCB** Data were insufficient to attempt regression using goldfish and fathead minnow. Regression was performed for carp, but did not yield statistically significant attenuation curves. Consequently, it is not possible to estimate when fish tissue might attain the TMDL target for PCBs. Although fish tissue target has not been met in the watershed, PCBs have not been detected in sediment in the watershed (including in Mugu Lagoon) since compliance monitoring began in 2008. PCBs are not detected in the dissolved fraction (<2 µm) of water column samples in Calleguas Creek watershed, 9 so the only route of potential contamination of fish begins with suspended and bottom sediment. Concentrations of PCBs range higher in fish collected in Mugu Lagoon than in fish collected in the freshwater reaches. Owing to a lack of site fidelity for fish species sampled in Mugu Lagoon, it is possible that fish collected in Mugu Lagoon are accumulating PCBs when outside of the estuary. However, there is no good explanation for the PCB load in fish tissue in the freshwater reaches, given that PCBs have not been detected in sediment in the freshwater reaches for many years. 10 ⁸ Based on 5 monitoring events at 12 monitoring sites during which water samples were fractionated into three particulate classes (2 μ m - 64 μ m, 64 μ m - 2 mm, > 2 mm) and a dissolved fraction (< 2 μ m). $^{^9}$ Based on 5 monitoring events at 20 monitoring sites during which water samples were fractionated into three particulate classes (2 μ m - 64 μ m, 64 μ m - 2 mm, > 2 mm) and a dissolved fraction (< 2 μ m). ¹⁰ The PCB MDLs in use by the CCW TMDL Monitoring Program are significantly lower than the TMDL WLA/LAs. Table 11. Time Frames of Attainment of Fish Tissue Targets and Final Sediment Allocations Obtained from Exponential Decay Functions or Monitoring Data | | Time Frame for Fish Tissue Target [a] | | | Time Frame for Final Sediment Allocation | | | | | |-----------|---------------------------------------|---------------------------------|-----------------------------------|--|--|--|--|------------------| | | Species | Calleguas Creek
Subwatershed | Revolon
Slough
Subwatershed | Arroyo Simi/
Las Posas | Lower Conejo
Creek | Calleguas
Creek | Revolon
Slough | Mugu
Lagoon | | DDE | Goldfish | 2012 | 2007 | | 2016 | 2017 | 2048 | | | | Fathead Minnow | 2030 | 2083 | [b] | | | | [b] | | | Carp | [b] | 2029 | | | | | | | | Goldfish | 1991 | 1993 | no trend | analysis/ | | no trend
analysis/
WLA recently
met | 2017 | | DDD | Fathead Minnow | 1997 | 2023 | analysis/
WLA recently | | ce 2010 | | | | | Carp | [b] | [b] | met | | | | | | | Goldfish | 1991 | 1998 | | ND since 2008 | | | no trend | | DDT | Fathead Minnow | 1997 | 2006 | 2007 | | | 2018 | analysis/
WLA | | | Carp | 2010 | [b] | | | | | recently met | | | Goldfish | 2018 | 2007 | ND since
2008 | no trend analysis/
WLA recently met | | 2039 | | | Toxaphene | Fathead Minnow | 2017 | 2038 [d] | | | | | ND since
2008 | | | Carp | [b] | 2024 | | | | | | | | Goldfish | 2025 | 2000 | | | | | | | Chlordane | Fathead Minnow | 2027 | 2084 | | | no trend analysis/ ND since 2008 in most reaches [e] | | | | | Carp | 2025 [d] | [b] | | ND Since | 2000 111 111031 16 | eaches [e] | | | | Goldfish | insuff. data | insuff. data | | no trend analysis/
ND since 2008 in all reaches | | | | | PCBs | Fathead Minnow | insuff. data | insuff. data | | | | | | | | Carp | [b] | [b] | | | | caciies | | [[]a] Attenuation rates were not sought using data from Mugu Lagoon owing to (1) insufficient data sets for individual species, and (2) uncertain site fidelity for the estuarine and marine species acquired. See text for more detail. [[]b] Although a sharp downward trend is evident in the time series of monitoring data, regression did not yield a statistically significant exponential decay function. [[]c] Regression did not yield a statistically significant exponential decay function. [[]d] Statistical significance of decay rate was borderline (0.13 . [[]e] Most recent sediment concentration exceeding the final WLA in Revolon Slough was observed in 2010. All other reaches have yielded non-detects since 2008. The outcomes for individual constituents are placed into the context of the anticipated potential data analysis scenarios in Table 12. Table 12. Data Analysis Scenarios that Matched Outcomes for Individual Constituents | Scenario | | Implication | Applicable Constituent | | |------------|---|---|---|--| | Scenario 1 | Fish tissue target has been met. Final WLAs/LAs are already met. | TMDL target for fish and sediment allocations have been attained early. | Dieldrin | | | Scenario 2 | Neither fish tissue targets nor final WLA/LA are met. Available attenuation rates for both media suggest these limits will be met by 2026. | TMDL target for fish and sediment allocations will be likely attained by 2026. | 4,4'-DDD 4,4'-DDT 4,4'-DDE (outside of
Revolon Slough) Toxaphene (outside of
Revolon Slough) | | | Scenario 4 | Neither fish tissue targets nor final WLA/LA are met. Available attenuation rates for both media suggest these limits will be met after 2026. | No evidence that underlying relationship between sediment and fish tissue is not linear. However, more time is likely needed to for natural attenuation to result in attainment of the TMDL target for fish and sediment allocations. | 4,4'-DDE (in Revolon
Slough) Toxaphene (in Revolon
Slough) | | | Scenario 7 | Fish tissue target is not met and attenuation rates are unknown or suggest target will not be met by 2026. Constituent not detected in sediment. | Attenuation in sediment is complete. No actions available to enhance attenuation rates in fish. | PCBs
Chlordane [a] | | [[]a] The decay rates for chlordane in fathead minnow suggest the TMDL deadline might not be met by 2026. Other decay rates obtained for chlordane in fish support timely attainment of the tissue target by 2026. # **Evaluation of Methods to Enhance Attenuation** The time series analyses support a prediction that attenuation of OCPs and PCBs is proceeding fast enough to lead to attainment of fish tissue targets (in freshwater reaches) and final sediment allocations by the TMDL deadline in 2026 in most cases. Fish collected in Mugu Lagoon are not appropriate indicators of pollutant concentrations in the sediment in Mugu Lagoon (for reasons explained above), and therefore fish tissue concentrations in Mugu Lagoon are not necessarily addressed by sediment management actions within the watershed. Although most fish samples from Mugu Lagoon still exceeded TMDL targets for 4,4'-DDE, toxaphene, chlordane, and PCBs, in 2015 (see Attachment 1), 4,4'-DDE is the only one of these four constituents that still exceeds the final sediment allocation in Mugu Lagoon. The other three constituents (toxaphene, chlordane, and PBCs) have not been detected in sediment there since 2008, and the time series for 4,4'-DDE in sediment shows marked and steady decline toward the final sediment allocation (see lower panel in Figure 6). The analyses summarized in Table 11 suggest that 4,4'-DDE and toxaphene may not meet pertinent limits for either fish or sediment in Revolon Slough by 2026. Consequently, an evaluation is presented below regarding methods
to enhance natural attenuation of 4,4'-DDE and toxaphene in Revolon Slough. Natural attenuation may be enhanced through methods that will reduce sediment loading in runoff from areas with high soil concentrations of OC pesticides and PCBs, and through removal or immobilization of instream sediment. The principal methods that are available to potentially reduce the contaminant mass in bottom sediment in Revolon Slough include: dredging of the slough, capping of sediments, urban runoff BMPs, and agricultural BMPs that arrest the transport of soil into ditches and receiving water. The likelihood that sediment detention (via basins or distributed agricultural BMPs) will enhance attenuation of legacy pesticides or PCBs depends in part on whether current concentrations are higher in the terrestrial material mobilized during runoff than in the bottom sediments already present in the receiving water. A special study (HCA Special Study) evaluating the presence of high concentration areas for OCPs and PCBs, and the potential for mitigation actions, was conducted between 2009-2011 as a requirement of the TMDL. As part of the study, sediment was monitored on several dates between 2009-2011 in selected agricultural drains and sediment basins. Several of the monitoring sites were located in the watershed of Revolon Slough or on the Oxnard Plain. In Table 13, concentrations of 4,4'-DDE and toxaphene obtained at these sites during the HCA Special Study are compared to bottom sediment concentrations in the receiving water site in Revolon Slough obtained during the same three years by the CCW TMDL Monitoring Program. Concentrations of 4,4'-DDE and toxaphene in sediment retained in a debris basin in a residential area were lower than those in the receiving water sediment. Concentrations of 4,4'-DDE and toxaphene in sediment lining several of the agricultural drainage ditches were higher than those in the receiving water sediment. This comparison suggests that methods that reduce transport of sediment in agricultural drainage are better suited than urban debris basins and other urban runoff BMPs to accelerate attenuation of these two legacy pesticides in Revolon Slough. As a result, the remainder of the discussion focuses on potential agricultural BMPs. In connection with its program to comply with the Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Agricultural Lands in the Los Angeles Region (Waiver), the Ventura County Agricultural Irrigated Lands Group (VCAILG) regularly surveys its membership on their use of agricultural BMPs. As part of these surveys, respondents are polled on their current and planned new future use of eight sediment management BMPs, which are listed in Table 14. Among other analyses conducted using BMP survey data, responses from individual growers are binned according to the drainage areas of VCAILG monitoring sites. The drainages of five of the VCAILG monitoring sites (05D_SANT_VCWPD, 05D_LAVD, 04D_WOOD, 04D_LAS, 04D_ETTG) fall within the Revolon Slough subwatershed. Metrics that are calculated for binned data include the percent of applicable acreage on which the BMPs are planned for new future use ("planned future adoption"). _ ¹¹ LWA (2012) Calleguas Creek Watershed OC Pesticides and PCBs TMDL Special Study #2. HCAs and Management Practices. Submitted to the Los Angeles Regional Water Quality Control Board, June 2012. Table 13. Comparison of 4,4'-DDE and Toxaphene Concentrations in Sediment Lining a Debris Basin, Agricultural Ditches, and Receiving Water in Revolon Slough Watershed. | Data Source | Site | Site ID | Description | Median concentration (ng/g) | | |--|---|-----------------|---|-----------------------------|-----------| | | Category | | (Lat., Long.) | 4,4'-DDE | Toxaphene | | HCA Special
Study
(2009-2011) | Residential
Drainage
Debris Basin | DB3-01 | W. Camarillo Hills West
Branch Debris Basin
(34.24, -119.06) | 8.2 | ND | | | | 05D_D_AVI | Drain at Aviation Dr. to
Revolon Slough
(34.21, -119.11) | 21.2 | 174.4 | | | | 05D_SANT_VCWPD | Santa Clara Drain at
VCWPD Gage 781
(34.24, -199.11) | 48.6 | 110.3 | | | Agricultural
Drainage
Ditch | 04D_ETTG | Discharge to Revolon
Slough at Etting Rd.
(34.16, -119.09) | 267.2 | 359.1 | | | | 01T_ODD2_DCH | Duck Pond/Mugu/Oxnard
Drain #2 S. of Hueneme Rd
(34.14, -119.12) | 89.1 | 242.7 | | | | 01T_ODD3_ARN_UP | Rio de Santa Clara/Oxnard
Drain #3 at Edison Dr.
(34.13, -119.17) | 175.4 | 980.0 | | CCW TMDL
Monitoring
Program
(2009-2011) | Receiving
Water | 04_WOOD | Revolon Slough at east
side of Wood Road
(34.17, -119.11) | 70.4 | 75.2 | Table 14. Sediment Management BMPs Included in VCAILG Membership Surveys | Survey
Question | BMP Description | |--------------------|---| | 20 | Long runs of production area are broken up by access roads or buffer strips to reduce sediment movement. | | 21 | In sloped production areas, one or more of the following management practices is used to minimize erosion: contour farming, contoured buffer strips, terracing | | 22 | Bare soil is minimized through use of cover crops, mulch, leaving plant debris, or planting subsequent crops, and the soil cover is replenished periodically to maintain effectiveness. | | 23 | Soil amendments, such as polyacrylamide (PAM), are used to reduce sediment movement and retain water. | | 24 | Berms, culverts, or flow channels are in place to divert water away from roads. These devices or structures are maintained to preserve their functionality. | | 25 | Road erosion is minimized by use of any of the following: grading, gravel, grass, mulch, water bars, drains | | 26 | Non-cropped areas with bare soil are protected from erosion with any of the following: vegetation, mulch, gravel, water diversion | | 27 | Ditch banks are protected from erosion with vegetation, rock placement or geotextiles. | | 28 | One or more of the following is in place to treat runoff before it leaves the property: grassed waterways, vegetated filter strips, sediment traps, tailwater recycling systems. | Metrics from the 2015 survey¹² were averaged for these sites to obtain an indication of sediment BMP trends in the Revolon Slough. Current use of most of the sediment management BMPs in Table 14 is already very high (i.e., in use on almost 100% of applicable acres managed by survey respondents). Three BMPs (listed in Table 15) were identified which are not currently in as wide use by survey respondents, and for which plans for *additional future* use (as percent of applicable acres) is reasonably high (i.e. higher than single digit percents). As is supported by the comparison of concentrations in drainage ditches and receiving water in Table 13, increased use of these BMPs has potential to enhance attenuation of 4,4'-DDE and toxaphene in Revolon Slough. Table 15. Sediment BMPs with Highest Rates of Planned New Adoption in Revolon Slough | | Percent of Applicable Acres | | | |---|-----------------------------|----------------------------------|--| | ВМР | Current Use | Planned Additional
Future Use | | | BMP 23. Soil amendments, such as polyacrylamide (PAM), are used to reduce sediment movement and retain water. | 40% | 25% | | | BMP 27. Ditch banks are protected from erosion with vegetation, rock placement or geotextiles | 79% | 18% | | | BMP 28. One or more of the following is in place to treat runoff before it leaves the property: grassed waterways, vegetated filter strips, sediment traps, tailwater recycling systems | 78% | 14% | | The HCA Special Study report reviewed routine maintenance activities performed by the Ventura County Watershed Protection District at its various facilities that result in disturbance, excavation, on-site relocation, and/or off-site removal of sediment that may contain OC pesticides and PCBs. The maintenance activities that include disturbance of sediments include the following: - Debris and detention basin cleanout - Improved and unimproved channel cleanout - Channel bed and bank repair - Mechanical weed control via disking and hydro-ax - Water diversions The review of flood control practices in the HCA Special Study report identified no substantive changes or additional BMPs that are needed to control sediment discharges from current flood control practices. However, one modification to the current practices was identified that could mitigate the mobilization of legacy pesticides: use of sediment quality data to inform the location or restrict the reuse of sediments (e.g., as construction or agricultural fill) contaminated by OCPs and PCBs. Attenuation rates may also be accelerated by removing or immobilizing instream sediment containing high concentrations of OC pesticides. Dredging involves the removal of accumulated ¹² See LWA (2015) *Ventura County Agricultural Irrigated Lands Group (VCAILG) Draft 2013-2014 Water Quality Management Plan.* Submitted to the Los Angeles Regional Water Quality Control Board, May 26, 2015. sediments from the creek bottom. Alternatively, sediment capping would involve covering contaminated sediment with another layer of sediment, gravel, or clay. Both sediment capping and dredging present challenges that may hinder their appropriateness for implementation in Revolon Slough. Sediment capping is most effective in large deep waterbodies, such as lakes, where hydrologic conditions do not disturb the capped area. In order for dredging to
be effective, dredging to a depth that would ensure removal of all contaminated sediments would be necessary. Additionally, dredging practices must be carefully managed to avoid damage to aquatic life, and short term high turbidity and mobilization of contaminated sediment. # **Conclusions** The results of the special study permit several conclusions. In most cases, attenuation of OCPs and PCBs appears to be proceeding fast enough to lead to attainment of fish tissue targets (in freshwater reaches) and final sediment allocations by the TMDL deadline in 2026. However, additional time may be needed to meet pertinent limits for fish tissue or sediment in Revolon Slough for 4,4'-DDE and toxaphene. Several agricultural sediment management BMPs are not completely adopted at present by growers in Revolon Slough watershed. Increased implementation of these BMPs may be the best route for accelerating attenuation of 4,4'-DDE and toxaphene in the receiving water sediment, but it is likely that additional time will still be needed to meet the limits. Control of sediment in agricultural discharges is more likely to enhance attenuation of 4,4'-DDE and toxaphene than detention basins for urban runoff. Fish collected in Mugu Lagoon are not obligate estuarine, resident fish and therefore not appropriate indicators of pollutant concentrations in the sediment in Mugu Lagoon. Legacy pollutant concentrations in fish tissue in Mugu Lagoon may not be representative of discharges in the watershed, especially since sediment concentrations in Mugu Lagoon are either already meeting, or near to meeting, applicable final allocations. As a result, fish tissue concentrations in the freshwater reaches may be more appropriate for determining compliance with the TMDL than the fish tissue concentrations in Mugu Lagoon. Attachment 1. Times Series of all Available Fish Tissue Samples for 4,4'-DDT, 4,4'-DDD, 4,4'-DDE, Toxaphene, Chlordane, and PCBs, by Subwatershed # DDE in Fish Tissue: Calleguas Creek Subwatershed # DDE in Fish Tissue: Revolon Slough Subwatershed # DDE in Fish Tissue: Mugu Lagoon # DDD in Fish Tissue: Calleguas Creek Subwatershed # DDD in Fish Tissue: Revolon Slough Subwatershed # DDD in Fish Tissue: Mugu Lagoon # DDT in Fish Tissue: Calleguas Creek Subwatershed # DDT in Fish Tissue: Revolon Slough Subwatershed Sample Date Fathead Mirrow Goldfich Green Sunfish Large Musth Bass Mosquitofish Muti-species Composite #### Total Chlordane in Fish Tissue: Mugu Lagoon #### PCBs in Fish Tissue: Calleguas Creek Subwatershed ### PCBs in Fish Tissue: Revolon Slough Subwatershed # Attachment 2. Time Series and Exponential Decay Functions for DDD, DDT, Toxaphene, Chlordane, and PCBs Note: Fish tissue target or final sediment WLA/LA is plotted as a dashed red line in each graph. #### DDD in Goldfish: Calleguas Creek Subwatershed DDD in Goldfish: Revolon Slough Subwatershed #### DDD in Fathead Minnow: Calleguas Creek Subwatershed ### DDD in Fathead Minnow: Revolon Slough Subwatershed ## DDD in Carp: Calleguas Creek Subwatershed ## DDD in Carp: Revolon Slough Subwatershed #### DDD in Sediment: Mugu Lagoon # DDT in Goldfish: Calleguas Creek Subwatershed ### DDT in Goldfish: Revolon Slough Subwatershed #### DDT in Fathead Minnow: Revolon Slough Subwatershed #### DDT in Sediment: Arroyo Simi & Arroyo Las Posas #### **DDT in Sediment: Revolon Slough** ## Toxaphene in Goldfish: Calleguas Creek Subwatershed # Toxaphene in Goldfish: Revolon Slough Subwatershed #### Toxaphene in Fathead Minnow: Calleguas Creek Subwatershed #### Toxaphene in Fathead Minnow: Revolon Slough Subwatershed #### Toxaphene in Sediment: Revolon Slough ### Total Chlordane in Goldfish: Calleguas Creek Subwatershed #### Total Chlordane in Goldfish: Revolon Slough Subwatershed # A COOPERATIVE STRATEGY FOR RESOURCE MANAGEMENT & PROTECTION March 24, 2016 Samuel Unger California Regional Water Quality Control Board Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, CA 90013 SUBJECT: Submittal of Calleguas Creek Watershed Organochlorine Pesticides, PCBs, and Siltation TMDL Special Study #3: Evaluation of Natural Attenuation Rates of Organochlorine Pesticides and PCBs in Calleguas Creek Watershed Dear Mr. Unger: On behalf of the Stakeholders Implementing TMDLs in the Calleguas Creek Watershed (Stakeholders), I am pleased to submit a technical memorandum that presents the results of Special Study #3: Evaluation of Natural Attenuation Rates of Organochlorine Pesticides and PCBs in Calleguas Creek Watershed. The Total Maximum Daily Load for Organochlorine Pesticides, Polychlorinated Biphenyls, and Siltation in Calleguas Creek, Its Tributaries, and Mugu Lagoon (TMDL) was adopted by the Los Angeles Regional Water Quality Control Board on July 7, 2005 and became effective on March 24, 2006 (Order No. R4-2005-010). Special Study #3 has a deadline of ten years after the TMDL effective date (i.e., March 24, 2016) and is described in the TMDL as follows: Evaluate natural attenuation rates and evaluate methods to accelerate organochlorine pesticide and polychlorinated biphenyl attenuation and examine the attainability of wasteload and load allocations in the Calleguas Creek Watershed. The submittal of the memorandum fulfills Requirement 13 of the implementation schedule for the OCs TMDL for the following Parties:. - POTWs Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks; - Urban Dischargers Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark, and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency; - Agricultural Dischargers consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and - Other dischargers consisting of U.S. Department of Navy and Caltrans. The TMDL established fish tissue concentration targets for total PCBs and a suite of 15 OCPs, and established interim and final waste load allocations (WLAs) for POTW effluent and urban discharges, and load allocations (LAs) for agricultural discharges, for "Category 1" constituents (chlordane, DDT, DDD, DDE, toxaphene, PCBs and dieldrin). The allocations for urban dischargers and irrigated agriculture were established as concentrations in bottom sediment in receiving waters. The allocations for POTWs were established as concentrations in effluent. The TMDL schedule provided 20 years after the TMDL effective date for attainment of final WLAs and LAs (i.e., March 24, 2026). As part of the special study, TMDL compliance monitoring data was examined to determine the degree to which final WLAs and LAs, and TMDL fish tissue targets have already been attained in the watershed. The results indicate that the final sediment allocations have already been attained for almost all combinations of reaches and constituents. However, 4,4'-DDE concentrations in sediment exceeded the final allocation in all reaches as recently as 2013 or 2014, depending on the reach. Final WLAs for all Category 1 constituents have been attained for the three POTWs that discharge to surface water. None of the fish tissue targets for Category 1 constituents are currently met throughout the watershed, with the exception of the target for dieldrin, which has been met since 2008. The subsequent steps taken for the special study can be summarized as follows: (1) time series analyses were performed to estimate attainment dates by which final allocations and fish tissue targets were likely to be met for all Category 1 constituents (excluding dieldrin, for which analysis was not necessary), (2) waterbody/constituent combinations were identified for which attainment of final allocations and/or fish tissue targets may occur after the TMDL deadline, and (3) methods for accelerating attenuation in the latter cases were evaluated. The results of the special study support a prediction that attenuation of OCPs and PCBs is proceeding fast enough to lead to attainment of fish tissue targets (in freshwater reaches) and final sediment allocations by the TMDL deadline in 2026 in most cases. However, additional time may be needed to meet pertinent limits for 4,4'-DDE and toxaphene in fish tissue and sediment in Revolon Slough. The results of the Special Study #3 can be used to support changes in the implementation schedule in the TMDL, if needed at a future date. Sincerely, Lucia McGovern Chair, Stakeholders Implementing TMDLs in the Calleguas Creek Watershed # Calleguas Creek Watershed TMDL Compliance Monitoring Program # Seventh Year Annual Monitoring Report – July 2014 to June 2015 Monitoring and Reporting Program for the Nitrogen and Related Effects; Organochlorine Pesticides, Polychlorinated Biphenyls and Siltation; Toxicity; Salts; and Metals and Selenium Total Maximum Daily Loads submitted to: LOS ANGELES REGIONAL WATER QUALITY CONTROL BOARD prepared by: LARRY WALKER ASSOCIATES on behalf of the: STAKEHOLDERS IMPLEMENTING TMDLS IN THE CALLEGUAS CREEK WATERSHED # Table of Contents | Executive Summary | ES-1 | |---|-------------------| | Introduction and Program Background | 1 | | Introduction | 1 | | Project Organization | 2 | | Watershed Background | 3 | | Monitoring Questions | 5 | | Monitoring Program Description | 6 | | Required Monitoring Elements | 6 | | Optional Monitoring Elements | 8 | | Special Studies | 9 | | Monitoring Program Structure | 10 | | Compliance Monitoring | 10 | | Compliance Monitoring for Toxicity, OC Pesticides, Metals, Nitrogen, an | nd Salts TMDLs 10 | | Investigation Monitoring | 11 | | Land Use Discharge Investigation | 11 | | Toxicity Investigation | 12 | | Sampling Sites | 12 | | Monitoring Data Summary | 25 | | OC Pesticides TMDL Data Summary | 27 | | Metals TMDL Data Summary | 43 | | Toxicity TMDL | 64 |
 Nutrients TMDL | 73 | | Salts TMDL | 82 | | Tissue Data | 94 | | Mugu Lagoon Tissue Data | 94 | | Freshwater Tissue Data | 102 | | Toxicity Data | 111 | | Compliance Comparison and Discussion | 114 | | Compliance at Receiving Water Sites | 115 | | Revisions and Recommendations | 134 | |---|-----| | OC Pesticides, Toxicity, Metals, Nutrients, and Salts | 128 | | Compliance Comparison Discussion | 128 | | POTW Compliance | 124 | # List of Tables | Table 1. Description of Calleguas Creek Watershed Reaches | 5 | |--|-----| | Table 2. Constituents and Monitoring Frequency for CCWTMP | 7 | | Table 3. Optional Constituents and Monitoring Frequency for CCWTMP | | | Table 4. CCWTMP Compliance Monitoring and Nutrient Investigation Sites Annual Samp Frequency | | | Table 5. CCWTMP Land Use Monitoring Sites and Sample Frequency | 15 | | Table 6. Toxicity Investigation Monitoring Sites and Sampling Frequency | 16 | | Table 7. Receiving Water Sites Color Coded by Subwatershed | 26 | | Table 8. Land Use and POTW Sites Color Coded by Type | 27 | | Table 9. Mugu Lagoon – Central Lagoon Tissue Data | 94 | | Table 10. Mugu Lagoon – Western Arm Tissue Data | 97 | | Table 11. Calleguas Creek – Camarillo Street CSUCI (03_UNIV) Fish Tissue Data Years | | | Table 12. Conejo Creek – Adolfo Road (9B_ADOLF) Fish Tissue Data Years 1 – 7 | | | Table 13. Arroyo Simi – Hitch Boulevard (07_HITCH) Fish Tissue Data Years 1 – 7 | | | Table 14. Arroyo Las Posas – Somis Road (06_SOMIS) Fish Tissue Data Years 1 – 7 | | | Table 15. Revolon Slough – Wood Road (04_WOOD) Fish Tissue Data Years 1 – 7 | | | Table 16. Revolon Slough – Wood Road (04_WOOD) Metals Fish Tissue Data Years 1 – | | | Table 17. Water Column Toxicity for All Monitoring Events and Sites | | | Table 18. Sediment Toxicity for All CCWTMP Freshwater Monitoring Events and Sites | 113 | | Table 19. Sediment Toxicity for Mugu Lagoon Monitoring Events and Sites | 113 | | Table 20. OC Pesticides, PCBs, & Siltation in Sediment | 115 | | Table 22. Nitrogen Compounds in Water | 118 | | Table 23. Toxicity, Diazinon, and Chlorpyrifos in Water | 121 | | Table 24. Metals and Selenium in Water | 122 | | Table 25. Monthly Mean Salts Concentrations | 123 | | Table 26. Nitrogen Compounds – POTWs | 124 | | Table 27. OC Pesticides, PCBs, and Siltation - POTWs | 125 | | Table 28. Toxicity, Chlorpyrifos, and Diazinon - POTWs | 126 | | Table 29. Metals and Selenium - POTWs | 126 | | Table 30. Salts - POTWs | 127 | | Table 31. Exceedances of Nitrate-N Numeric TMDL Target of 10 mg/L | 129 | | Table 32. Complia | nce and Land Use Sites Comparison to Determine MS4 Chlorpyrife | os WLA | |---------------------|--|--------| | Complia | nce | 130 | | Table 33. Selenium | Monitoring Data (ug/L) in the Revolon Slough Subwatershed | 131 | | Table 34. Total Di | ssolved Solids Monitoring Data (mg/L) in Revolon Slough | 132 | | Table 35. Sulfate I | Monitoring Data (mg/L) in Revolon Slough | 132 | | Table 36. Boron M | Ionitoring Data (mg/L) in Revolon Slough | 132 | # List of Figures | Figure 1. Calleguas Creek Watershed | 4 | |--|------| | Figure 2. CCWTMP Compliance Monitoring Sampling Sites – Receiving Water | . 17 | | Figure 3. CCWMTP Compliance Monitoring Receiving Water Sampling Sites – Freshwater Sediment | . 18 | | Figure 4. CCWMTP Compliance Monitoring Sampling Sites – Freshwater Fish Tissue | . 19 | | Figure 5. CCWMTP Compliance Monitoring Sampling Sites – POTW Effluent | . 20 | | Figure 6. CCWMTP Compliance Monitoring Sampling Zones – Mugu Lagoon Sediment | . 21 | | Figure 7. CCWTMP Compliance Monitoring Sampling Zones – Mugu Lagoon Tissue | . 22 | | Figure 8. CCWTMP Toxicity Investigation Receiving Water Sampling Sites – Water and Sediment | . 23 | | Figure 9. CCWTMP Land Use Sampling Sites | . 24 | | Figure 10. 4,4'-DDD Water Column Concentrations in Receiving Water Sites: 2008-2015 | | | Figure 11. 4,4'-DDD Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-20 | | | Figure 12. 4,4'-DDE Water Column Concentrations in Receiving Water Sites: 2008-2015 | | | Figure 13. 4,4'-DDE Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-20 | | | Figure 14. 4,4'-DDT Water Column Concentrations in Receiving Water Sites: 2008-2015 | . 32 | | Figure 15. 4,4'-DDT Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-20 | | | Figure 16. Total Chlordane Water Column Concentrations in Receiving Water Sites: 2008-20 | | | Figure 17. Total Chlordane Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | | | Figure 18. Toxaphene Water Column Concentrations in Receiving Water Sites: 2008-2015 | . 36 | | Figure 19. Toxaphene Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | . 37 | | Figure 20. 4,4'-DDD Sediment Concentrations in Receiving Water Sites: 2008-2015 | . 38 | | Figure 21. 4,4'-DDE Sediment Concentrations in Receiving Water Sites: 2008-2015 | . 39 | | Figure 22. 4,4'-DDT Sediment Concentrations in Receiving Water Sites: 2008-2015 | . 40 | | Figure 23. Total Chlordane Sediment Concentrations in Receiving Water Sites: 2008-2015 | . 41 | | Figure 24. Toxaphene Sediment Concentrations in Receiving Water Sites: 2008-2015 | . 42 | | Figure 25. Total Copper Dry Weather Concentrations in Receiving Water Sites: 2008-2015 | . 44 | | Figure 26. Total Copper Stormwater Concentrations in Receiving Water Sites: 2008-2015 45 | |--| | Figure 27. Total Copper Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | | Figure 28. Total Copper Wet Weather Concentrations in Urban and Ag Sites: 2008-2014 47 | | Figure 29. Dissolved Copper Concentrations in Receiving Water Sites: 2008-2015 48 | | Figure 30. Dissolved Copper Concentrations in Urban, Ag, and POTW Sites: 2008-2015 49 | | Figure 31. Total Mercury Concentrations in Receiving Water Sites: 2008-2015 50 | | Figure 32. Total Mercury Concentrations in Urban and Ag Sites: 2008-2015 51 | | Figure 33. Total Nickel Dry Weather Concentrations in Receiving Water Sites: 2008-2015 52 | | Figure 34. Total Nickel Stormwater Concentrations in Receiving Water Sites: 2008-2015 53 | | Figure 35. Total Nickel Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | | Figure 36. Total Nickel Stormwater Concentrations in Urban and Ag Sites: 2008-2015 55 | | Figure 37. Dissolved Nickel Concentrations in Receiving Water Sites: 2008-2015 56 | | Figure 38. Dissolved Nickel Concentrations in Urban, Ag, and POTW Sites: 2008-2015 57 | | Figure 39. Total Selenium Dry Weather Concentrations in Receiving Water Sites: 2008-2015 58 | | Figure 40. Total Selenium Stormwater Concentration in Receiving Water Sites: 2008-2015 59 | | Figure 41. Total Selenium Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | | Figure 42. Total Selenium Stormwater Concentrations in Urban and Ag Sites: 2008-2015 61 | | Figure 43. Dissolved Zinc Concentrations in Receiving Water Sites: 2008-2015 | | Figure 44. Dissolved Zinc Concentrations in Urban, Ag, and POTW Sites: 2008-2015 63 | | Figure 45. Chlorpyrifos Dry Weather Concentrations in Receiving Water Sites: 2008-2015 65 | | Figure 46. Chlorpyrifos Stormwater Concentrations in Receiving Water Sites: 2008-2015 66 | | Figure 47. Chlorpyrifos Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 | | Figure 48. Chlorpyrifos Stormwater Concentrations in Urban and Ag Sites: 2008-2015 68 | | Figure 49. Diazinon Dry Weather Concentrations in Receiving Water Sites: 2008-2015 69 | | Figure 50. Diazinon Stormwater Concentrations in Receiving Water Sites: 2008-2015 | | Figure 51. Diazinon Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 71 | | Figure 52. Diazinon Stormwater Concentrations in Urban and Ag Sites: 2008-2015 | | Figure 53. Ammonia-N Concentrations in Receiving Water Sites: 2008-2015 | | Figure 54. Ammonia-N Concentrations in Ag and POTW Sites: 2008-2015 | | Figure 55. Nitrate-N Concentrations in Receiving Water Sites: 2008-2015 | | Figure 56. Nitrate-N Concentrations in Ag and POTW Sites: 2008-2015 | |--| | Figure 57. Nitrite-N Concentrations in Receiving Water Sites: 2008-2015 | | Figure 58. Nitrite-N Concentrations in Ag and POTW Sites: 2008-2015 | | Figure 59. Nitrate-N + Nitrite-N Concentrations in Receiving Water Sites: 2008-2015 | | Figure 60. Nitrate-N + Nitrite-N Concentrations in Ag and POTW Sites: 2008-2015 81 | | Figure 61. TDS Monthly Means for Receiving Water Sites Collected During Dry Weather 82 | | Figure 62. Chloride Monthly Means for Receiving Water Sites Collected During Dry Weather 83 | | Figure 63. Sulfate Monthly Means for Receiving Water Sites Collected During Dry Weather . 84 | | Figure 64. Boron Monthly Means for Receiving Water Sites Collected During Dry Weather 85 | | Figure 65. Total Dissolved Solids in Water from Urban and Ag Sites: 2011-2015 | | Figure 66. Chloride in Water from Urban & Ag Sites: 2011-2015 | | Figure 67. Sulfate in Water from Urban & Ag Sites: 2011-2015 | | Figure 68. Boron in Water from Urban & Ag Sites: 2011-2015 | | Figure 69. TDS in Water from POTW Sites: 2012-2015 | | Figure 70. Sulfate in Water from POTW Sites: 2012-2015 | | Figure 71. Chloride in Water from POTW Sites: 2012-2015 | | Figure 72. Boron in Water from POTW Sites: 2012-2015 | ### Appendices - Text Documents Appendix A. Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts TMDLs Appendix B. Calibration Event Summary for Salts TMDL Appendix C. Salts Rating Curves and Surrogate Relationships Appendix D. Toxicity Testing and
Toxicity Identification Evaluations Summary Appendix E. Laboratory QA/QC Results and Discussion #### Attachments - Electronic Documents Attachment 1. Toxicity Data Attachment 2. Monitoring Data Attachment 3. Salts Mean Daily Flows: July 2014-June 2015 Attachment 4. Chain-of-Custody Forms #### Acronyms Ag Waiver Conditional Waiver for Irrigated Agricultural Lands AMR Annual Monitoring Report AWOMP Agriculture Water Quality Management Plan BPAs Basin Plan Amendments BMP Best Management Practice Caltrans California Department of Transportation CCW Calleguas Creek Watershed CCWTMP Calleguas Creek Watershed TMDL Compliance Monitoring Program DNQ Detected Not Quantified EC Electrical Conductivity EST Estimated GSQC General Sediment Quality Constituents GWQC General Water Quality Constituents LA Load Allocation MOA Memorandum of Agreement MDL Method Detection Limit NA Not ApplicableND Not DetectedNS Not SampledOC Organochlorine OP Organophosphorus **PCBs** Polychlorinated Biphenyls **Publically-Owned Treatment Works POTWs** QA **Quality Assurance** **QAPP** Quality Assurance Project Plan **Quality Control** QC Reporting Limit RL **Standard Operating Procedures SOPs** TDS **Total Dissolved Solids** TIE **Toxicity Identification Evaluation** TKN Total Kjehdahl Nitrogen TMDL Total Maximum Daily Load **Total Organic Carbon** TOC **Total Suspended Solids** TSS **VCAILG** Ventura County Agricultural Irrigated Lands Group Wasteload Allocation WLA #### **Executive Summary** The purpose of this annual report is to document the seventh-year monitoring (July 2014 to June 2015) efforts and results of the Calleguas Creek Watershed (CCW) Total Maximum Daily Load (TMDL) Compliance Monitoring Program (CCWTMP) for the five TMDLs covered by the Quality Assurance Project Plan (QAPP). This annual report includes summaries of the sampling events, data summaries, and a compliance comparison. #### TOTAL MAXIMUM DAILY LOADS There are six TMDLs currently effective and being implemented in the Calleguas Creek Watershed. They include: - Nitrogen Compounds and Related Effects in Calleguas Creek (Nitrogen or Nutrients TMDL) - Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs) and Siltation in Calleguas Creek, its Tributaries, and Mugu Lagoon (OC Pesticides TMDL) - Toxicity, Chlorpyrifos, and Diazinon in the Calleguas Creek, its Tributaries and Mugu Lagoon (Toxicity TMDL) - Metals and Selenium in Calleguas Creek, its Tributaries, and Mugu Lagoon (Metals TMDL) - Revolon Slough and Beardsley Wash Trash TMDL (Trash TMDL)¹ - Boron, Chloride, Sulfate and TDS (Salts) in the Calleguas Creek, its Tributaries and Mugu Lagoon (Salts TMDL) To address the monitoring requirements of the TMDLs, the CCWTMP was established and a QAPP developed and approved by the Los Angeles Regional Water Quality Control Board (Regional Water Board) Executive Officer. The QAPP currently addresses monitoring requirements for the Nitrogen, OC Pesticides, Toxicity, Metals, and Salts TMDLs. The Trash TMDL is addressed through a separate monitoring plan and annual monitoring report. #### PROJECT ORGANIZATION The CCWTMP is a coordinated effort with the various responsible parties that make up the Stakeholders Implementing TMDLs in the Calleguas Creek Watershed (Stakeholders). Stakeholders identified in the TMDLs have developed a Memorandum of Agreement (MOA) that outlines an agreement to implement the CCWTMP. The stakeholders to the MOA, for which this report fulfills the TMDL monitoring requirements, are as follows: • **POTWs**: consisting of Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks; _ ¹ Information related to the Revolon Slough and Beardsley Wash Trash TMDL is not part of this report. The Trash TMDL annual report was submitted to the Regional Water Board on December 15, 2014. - Urban Dischargers: consisting of the Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency; - **Agricultural Dischargers**: consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and - Other Dischargers: consisting of the U.S. Department of Navy and Caltrans. #### MONITORING EVENT SUMMARIES Sampling events required by the Nitrogen, OC Pesticides, Toxicity, Metals, and Salts TMDLs during the seventh year of TMDL monitoring included four dry-weather events (Events 44, 45, 48, and 49) and two wet weather events (Events 46 and 47). Grab samples for salts were obtained during these events, but were not used directly to determine compliance at receiving water sites.² A summary of Events 44 through 49 is included in Table ES-1. Table ES - 1. Summary of Year 7 Monitoring Events | Event Ty | | | Mugu Lagoon | | | Freshwater Sites | | | |----------|------|----------|------------------|-----------------------------------|--------|--------------------------------|-----------------------------------|----------------| | | Туре | Date | Water
Quality | Sediment
Quality &
Toxicity | Tissue | Water
Quality &
Toxicity | Sediment
Quality &
Toxicity | Tissue | | 44 | Dry | Aug 2014 | Х | Х | Х | Х | Х | | | 45 | Dry | Nov 2014 | Х | | | Х | | | | 46 | Wet | Dec 2014 | Х | | - | Х | | | | 47 | Wet | Dec 2014 | Х | | | Х | | | | 48 | Dry | Feb 2015 | Х | | | Х | | | | 49 | Dry | May 2015 | Х | | Х | Х | | X ¹ | ^{1.} Fish tissue collected in June 2015 as part of Event 49. #### **COMPLIANCE SUMMARY** For the most part, the CCW is in compliance with the applicable interim or final waste load allocations (WLAs) and load allocations (LAs) currently in effect for the Nutrients, OC Pesticides, Toxicity, Metals, and Salts TMDLs. The following observations summarize the compliance status with these TMDL allocations: - One exceedance of the interim WLA for 4,4'-DDT occurred this monitoring year. - Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed in Mugu Lagoon, Revolon Slough, Beardsley Wash, Calleguas Creek, Arroyo Las Posas, and Arroyo Simi. Most of the exceedances occurred during dry events. No exceedances of final nutrient WLAs were measured at any POTW. ES-2 ² Grab samples for salts at receiving water compliance sites are used to develop statistical relationships between specific conductivity (EC) and salt constituents, which are in turn used to convert high-density EC data from continuous monitors in the field to time series of salt concentrations. - Four exceedances of the final MS4 WLAs for chlorpyrifos were measured at receiving water sites during the dry weather; however, there were no exceedances of the interim LAs. There were 12 exceedances of the final MS4 chlorpyrifos WLA during wet weather and one instance where the chlorpyrifos concentration was above the final MS4 WLA and the interim LA. In addition, there was one instance where the diazinon final MS4 WLA and interim LA were exceeded during dry weather. There were no exceedances of the final WLAs for chlorpyrifos or diazinon at any POTW. - Exceedances of both the interim LA and MS4 WLA for total selenium were measured at the 04_WOOD receiving water monitoring station in Revolon Slough during the four dry weather sampling events. - Toxicity was observed at some locations in the watershed and Toxicity Identification Evaluations (TIEs) were initiated for all samples meeting the requirements in the QAPP. As a result, the Stakeholders are in compliance with the toxicity WLAs and LAs per the requirements of the TMDL. - In general, receiving water sites were in compliance with interim LAs and MS4 WLAs established by the Salts TMDL; the only exception being exceedances of total dissolved solids, sulfate, and boron measured at 04_WOOD in the Revolon Slough watershed. POTWs are in compliance with interim salts WLAs, with the exception of the Camarillo Water Reclamation Plant (WRP), which experienced exceedances of chloride, sulfate, and total dissolved solids (TDS). The exceedances of interim salts WLAs for the Camarillo WRP have resulted from increased influent salt concentrations due to water conservation and a shift in the composition of the water supplied within the service area. Since the process for addressing salts is a watershed effort involving significant capital investments, the Camarillo WRP has received a time schedule order to adjust the interim limits for TDS and sulfate. During the last monitoring year, application of interim limits for chloride was stayed by State Board Order 2003-0019. As a result, the interim limits in the TMDL are not the currently applicable interim limits for the Camarillo WRP discharge. #### **MONITORING PROGRAM CHANGES** A revised QAPP was submitted to the Los Angeles Regional Water Quality Control Board (Regional Water Board) in December 2014. Although official approval of the revised QAPP has not yet been received by the Stakeholders, monitoring for the 2015-2016 monitoring year is being conducted per the revised QAPP under the assumption that no response from the Regional Water Board indicated there were no requested changes to the revised QAPP. The QAPP was updated to incorporate the Salts TMDL monitoring approach. The QAPP was also updated for all constituents to reflect the recommendations identified in prior annual reports and reflect monitoring adjustments that have been implemented due to field conditions. ~Page intentionally left blank~ # Introduction and Program Background ### INTRODUCTION In the Calleguas Creek Watershed (CCW), the following six total maximum daily loads (TMDLs) are currently effective and include monitoring requirements in the implementation plans: - Nitrogen Compounds and Related Effects in Calleguas Creek (Nitrogen or Nutrients TMDL) - Organochlorine (OC) Pesticides, Polychlorinated Biphenyls
(PCBs) and Siltation in Calleguas Creek, its Tributaries, and Mugu Lagoon (OC Pesticides TMDL) - Toxicity, Chlorpyrifos, and Diazinon in the Calleguas Creek, its Tributaries and Mugu Lagoon (Toxicity TMDL) - Metals and Selenium in Calleguas Creek, Its Tributaries, and Mugu Lagoon (Metals TMDL) - Revolon Slough and Beardsley Wash Trash TMDL (Trash TMDL) ¹ - Boron, Chloride, Sulfate and TDS (Salts) in the Calleguas Creek, its Tributaries and Mugu Lagoon (Salts TMDL) To address the monitoring requirements of the TMDLs, the Calleguas Creek Watershed TMDL Compliance Monitoring Program (CCWTMP) was established and a Quality Assurance Project Plan (QAPP) developed by the Stakeholders Implementing TMDLs in the Calleguas Creek Watershed (Stakeholders) and approved by the Los Angeles Regional Water Quality Control Board (Regional Water Board) Executive Officer. The QAPP currently addresses monitoring requirements for the Nitrogen, OC Pesticides, Toxicity, Salts, and Metals TMDLs. The Trash TMDL is addressed through a separate monitoring plan and annual monitoring report. A monitoring approach (Salts Plan) for the Salts TMDL was submitted by the Stakeholders to the Regional Water Board in June 2009, which was conditionally approved in September 2011. Compliance monitoring for the Salts TMDL was required starting September 9, 2012. The primary purpose of this report is to document the seventh year monitoring efforts (July 2014 to June 2015) and results of the CCWTMP for the five TMDLs included in the QAPP. The report includes summaries of the sampling events, data summaries, and a compliance comparison. The report is divided into the following sections: - Introduction and Program Background - Monitoring Program Structure - Monitoring Data Summary - Compliance Analysis and Discussion - Revisions and Recommendations _ ¹ Information related to the Revolon Slough and Beardsley Wash Trash TMDL is not part of this report. The Trash TMDL annual report will be submitted to the Regional Water Board on December 15, 2015. In addition, there are several appendices included with this report and several attachments (electronic data files) associated with this report, including: - Appendices (text documents) - o Appendix A: Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts TMDLs - o Appendix B: Calibration Event Summary for Salts TMDL - o Appendix C: Salts Rating Curves and Surrogate Relationships - o Appendix D: Toxicity Testing and Toxicity Identification Evaluations Summary - Appendix E: Laboratory Quality Assurance/Quality Control Results and Discussion - Attachments (electronic data files) - o Attachment 1: Toxicity Data - o Attachment 2: Monitoring Data - o Attachment 3: Salts Mean Daily Flows: July 2014 to June 2015 - o Attachment 4: Chain-of-Custody Forms #### PROJECT ORGANIZATION The CCWTMP is a coordinated effort where the various responsible parties identified in the TMDLs have developed a Memorandum of Agreement (MOA) that outlines an agreement to implement the CCWTMP. The responsible parties identified in the organizational structure have formally joined together to fulfill their monitoring requirements as outlined in the Basin Plan Amendments (BPAs) for the five TMDLs included in the QAPP. The CCWTMP is intended to fulfill the monitoring requirements for only those stakeholders that are part of the MOA and/or identified by the participants of the MOA. The stakeholders to the MOA for which this report fulfills the TMDL monitoring requirements are as follows: - **POTWs**: consisting of Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks; - Urban Dischargers: consisting of the Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency; - **Agricultural Dischargers**: consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and - Other Dischargers: consisting of the U.S. Department of the Navy and the California Department of Transportation (Caltrans). Per the MOA, a Management Committee, consisting of one representative each from the POTWs, Urban Dischargers and Other Dischargers groups, and two representatives from the Agricultural Dischargers group, oversees the CCWTMP and makes decisions to assure the CCWTMP is carried out in a timely, accountable fashion. Prior to the initiation of the first required sampling event in 2008, the Stakeholders contracted the day-to-day management of the CCWTMP activities and field sampling activities. The following contractors performed the following tasks during the sixth year monitoring effort: - General Project Management Larry Walker Associates, Inc. (LWA) - Field Monitoring Activities - Mugu Lagoon Water Quality Sampling MBC Applied Environmental Sciences (MBC) - Freshwater Water Quality/Sediment Sampling Kinnetic Laboratories, Inc. (KLI), Fugro West, Inc. (Fugro), LWA - o Freshwater Fish Tissue Cardno ENTRIX - o Bird Egg Collection Naval Base Ventura County Environmental Staff - Water, Sediment, and Tissue Chemistry Analysis Physis Environmental Laboratories, Inc. (Physis) - Salts Chemistry Analysis Fruit Growers Laboratory, Inc. (FGL) and Physis - Toxicity Analysis Pacific Eco Risk Laboratories (PacEco) The aforementioned contractors performed all the management activities and sampling efforts covered by this annual report. All field contractors are the same as used in last year's sampling efforts. As the monitoring program moves forward this list of contractors may continue to be amended to reflect new contractors hired on to perform required or new duties per the decision of the Stakeholders in the CCW. #### WATERSHED BACKGROUND Calleguas Creek drains an area of approximately 343 square miles from the Santa Susana Pass in the east to Mugu Lagoon in the southwest. The main surface water system drains from the mountains in the northeast part of the watershed toward the southwest where it flows through the Oxnard Plain before emptying into the Pacific Ocean through Mugu Lagoon. The watershed, which is elongated along an east-west axis, is approximately thirty miles long and fourteen miles wide. The Santa Susana Mountains, South Mountain, and Oak Ridge form the northern boundary of the watershed; the southern boundary is formed by the Simi Hills and Santa Monica Mountains. Figure 1 depicts the CCW and Table 1 presents the reaches of the CCW as identified in the TMDLs covered by the CCWTMP. Figure 1. Calleguas Creek Watershed **Table 1. Description of Calleguas Creek Watershed Reaches** | Reach
No. | Reach Name | Subwatershed | Geographic Description | |-----------------|--|--------------|---| | 1 | Mugu Lagoon | Mugu | Lagoon fed by Calleguas Creek | | 2 | Calleguas Creek (Estuary to Potrero Rd.) | Calleguas | Downstream (south) of Potrero Rd | | 3 | Calleguas Creek (Potrero Rd. to Conejo Creek) | Calleguas | Potrero Rd. upstream to confluence with Conejo Creek | | 4 | Revolon Slough | Revolon | Revolon Slough from confluence with Calleguas Creek to Central Ave | | 5 | Beardsley Channel | Revolon | Revolon Slough upstream of Central Ave. | | 6 | Arroyo Las Posas | Las Posas | Confluence with Calleguas Creek to Hitch Road | | 7 | Arroyo Simi | Arroyo Simi | End of Arroyo Las Posas (Hitch Rd) to headwaters in Simi Valley. | | 8 | Tapo Canyon Creek | Arroyo Simi | Confluence w/ Arroyo Simi up Tapo
Canyon to headwaters | | 9B ¹ | Conejo Creek (Camrosa
Diversion to Arroyo Santa Rosa) | Conejo | Extends from the confluence with Arroyo Santa Rosa downstream to the Conejo Creek Diversion. | | 9A ¹ | Conejo Creek (Calleguas Creek to Camrosa Diversion) | Conejo | Extends from Conejo Creek Diversion to confluence with Calleguas Creek. | | 10 | Hill Canyon reach of Conejo
Creek | Conejo | Confluence with Arroyo Santa Rosa to confluence with N. Fork; and N. Fork to just above Hill Canyon WTP | | 11 | Arroyo Santa Rosa | Conejo | Confluence with Conejo Creek to headwaters | | 12 | North Fork Conejo Creek | Conejo | Confluence with Conejo Creek to headwaters | | 13 | Arroyo Conejo (South Fork
Conejo Creek) | Conejo | Confluence with N. Fork to headwaters —two channels | ^{1.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. ## **MONITORING QUESTIONS** The purpose of the CCWTMP is to direct the monitoring activities conducted to meet the requirements of the TMDLs effective for the CCW, excluding the Trash TMDL. The goals of the CCWTMP include: - To determine compliance with numeric targets, waste load and load allocations, and interim load reduction milestones. - To test for sediment toxicity at sediment monitoring stations. - To identify causes of unknown toxicity. - To generate additional land use runoff data to better understand pollutant sources and proportional contributions from various land use types. - To monitor the effect of implementation actions by urban, POTW, and agricultural dischargers on in-stream water, sediment, fish tissue quality, and watershed balances (salts). - To implement the program consistent with other regulatory actions within the CCW. In addition, the CCWTMP is intended to answer the following monitoring questions to meet the goals of the program: - Are numeric targets and allocations met at the locations indicated in the TMDLs? - Are conditions improving? - What is the contribution of constituents of concern from various land use types? #### MONITORING PROGRAM DESCRIPTION The CCWTMP was developed to address all necessary TMDL monitoring requirements and answer the monitoring
questions mentioned previously using the following monitoring elements. # **Required Monitoring Elements** The following environmental monitoring elements are required by the TMDLs' BPAs and are included in the CCWTMP: - General water and sediment quality constituents; - Water column and sediment toxicity; - Metals and selenium in water, sediment, fish tissue, and bird eggs; - Organic compounds in water, sediment, and fish tissue; and, - Nitrogen and phosphorus compounds in water. - Continuous salt concentrations and flow (the latter only at Salts TMDL receiving water compliance sites) Table 2 lists the constituents for which analyses are conducted. Table 2 also provides a summary of sampled constituent groups and sampling frequency. The QAPP outlines, in detail, the justification of the process design, specific methodologies (both field and analytical), and quality assurance/quality control (QA/QC) procedures. Table 2. Constituents and Monitoring Frequency for CCWTMP (varies by site) | Frequency | | | | |--|--|--|--| | Quarterly + Two wet events | | | | | | | | | | Quarterly based on location + Two wet events | | | | | | | | | | Quarterly + Two wet events | | | | | | | | | | Quarterly + Two wet events | | | | | _ Quarterly + Two wet events ⁷ | | | | | Quarterly 1 1 We wet events | | | | | | | | | | Receiving water: Continuous (via insitu sensors for EC and depth) plus monthly grabs for EC and discharge for sensor calibration | | | | | Receiving water: Continuous (derived from EC/salt relationships) | | | | | Other sites: Quarterly + Two wet events | | | | | Annually | | | | | (Every three years in Lagoon) | | | | | Annually | | | | | (Every three years in Lagoon) | | | | | Annually | | | | | Annually | | | | | | | | | Table 2. Constituents and Monitoring Frequency for CCWTMP (varies by site) - continued | Additional Constituents For Mugu Lagoon Sediment Metals ⁹ | Every three years | |---|----------------------------------| | Tissue | Annually | | Percent Lipids, OC Pesticides ¹ and PCBs ¹⁰ , OP Pesticides ³ , and Metals ¹¹ | (Every three years in
Lagoon) | - 1. OC Pesticides considered: aldrin, alpha-BHC, beta-BHC, gamma-BHC (lindane), delta-BHC, chlordane-alpha, chlordane-gamma, 2,4'-DDD, 2,4'-DDE, 2,4'-DDD, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, and toxaphene - 2. PCBs in water and sediment considered: Aroclors identified in the CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260). - 3. OP Pesticides considered: chlorpyrifos, diazinon, and malathion. Chlorpyrifos is the only OP pesticide that will be measured in tissue, as it is the only OP listed in tissue. - 4. Triazine Pesticides considered: atrazine, prometryn, and simazine. Analysis of triazines ceased during year 3 following the recommendation being included in the Revisions and Recommendations section of both the year 1 and year 2 annual reports. - 5. Pyrethroid Pesticides considered: bifenthrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin - Copper, mercury, nickel, selenium and zinc will be measured as dissolved and total recoverable. - 7. Per the Metals TMDL BPA requires that "In-stream water column samples will be collected monthly for analysis of general water quality constituents (GWQC) and, copper, mercury, nickel, selenium, and zinc for the first year. After the first year, the Executive Officer will review the monitoring report and revise the monitoring frequency as appropriate." Monthly monitoring will be suspended until such time as the Executive Officer has reviewed the monitoring report and considered revisions to the monitoring frequency. Until the Executive Officer has considered the frequency, metals will be collected quarterly in conjunction with the other TMDLs. - 8. Monitoring at sites in Mugu Lagoon other than at the Ronald Reagan Bridge for metals is an optional element. - 9. Includes arsenic, cadmium, copper, lead, mercury, nickel, selenium and zinc. Arsenic, lead, and cadmium are included in addition to constituents required in the Metals TMDL as they have been found in previous sediment studies conducted in Mugu Lagoon to exceed guideline values used to interpret the relationship between sediment chemistry and biological impacts. - 10. PCBs in tissue considered: individual congers. - 11. Mercury and Selenium will be measured in fish tissue and bird eggs. # **Optional Monitoring Elements** The QAPP outlines the optional monitoring efforts, all of which are considered above and beyond what is necessary to meet the requirements of the BPAs and answer the monitoring questions. Table 3 lists the constituents and analyses that are considered optional for the CCWTMP. Monitoring for the constituents and conducting the analyses are not BPA requirements but are important to meeting general program goals and answering program questions. Table 3 also provides a general sampling frequency for each constituent group. Table 3. Optional Constituents and Monitoring Frequency for CCWTMP (varies by site) | Constituent | Frequency | | |---|---|--| | Organic Constituents in Water – Grain Size Fractions ¹ | One wet event annually | | | OC Pesticides and PCBs, OP, Triazine ² , and Pyrethroid Pesticides | one werevent armaany | | | Organic Constituents in Sediment – Grain Size Fractions ¹ | Annually (Every three years in Mugu Lagoon) | | | OC Pesticides and PCBs, OP, Triazine ² , and Pyrethroid Pesticides | | | | Additional Constituents for Mugu Lagoon Sediment | | | | Macrobenthic community assessment | Every three years ³ | | | Sediment Toxicity – Embryo Mytilus edulis or Crassostrea gigas | | | ^{1.} Please see Table 2 for a list of individual constituents in each suite. # **Special Studies** The Nitrogen, Toxicity, OC Pesticides, Salts, and Metals TMDL Implementation Plans identify required and optional special studies to investigate a range of issues. No specific special studies results are incorporated into this annual report summary at this time as the results of all special studies conducted to date have been submitted as separate reports. Data gathered during special study specific sampling may also be utilized to further answer not only the special studies questions, but also be applied to the overall CCWTMP goals and questions identified previously in this report. ^{2.} Analysis of triazines ceased during year three following the recommendation being included in the Revisions and Recommendations section of both the year one and year two annual reports. ^{3.} Mugu Lagoon assessments were conducted during the first and fourth years of monitoring. # Monitoring Program Structure As outlined previously, the CCWTMP covers a broad range of TMDL monitoring requirements, including both required and optional efforts. The overall structure of these requirements per each event can be broken down into two categories: (1) compliance monitoring and (2) investigation monitoring. Compliance monitoring sites are typically located in receiving water bodies where 303(d) listings occur, and are considered points of compliance measurements. The investigational sites are located throughout the watershed, and include monitoring of drain outfalls. The purpose of these sites is not to measure compliance, but to assist with evaluating land use-specific contributions of various constituents to the watershed. The CCWTMP effort is also divided into two monitoring efforts: (1) dry weather monitoring and (2) wet weather storm water monitoring. The following sections describe, in detail, the basis for each monitoring effort, starting with the definitions of the compliance monitoring sites and investigation monitoring sites. Specific monitoring efforts associated with each sample site are included, including the frequency of sampling by site for both dry weather and wet weather events. The sampling frequency and the constituents monitored for at the sites covered by the CCWTMP vary. A more detailed description of each topic covered can be found in the appropriate element of the QAPP, including standard operating procedures (SOPs) for field collection and sample handing techniques, and analytical procedures and protocols including minimum detection limit (MDL) and reporting limit (RL) requirements. #### **COMPLIANCE MONITORING** # Compliance Monitoring for Toxicity, OC Pesticides, Metals, Nitrogen, and Salts TMDLs For compliance monitoring to address the Toxicity, OC Pesticides, Metals and Nitrogen TMDLs, dry weather in-stream water column samples were collected quarterly for water column toxicity, general water quality constituents (GWQC), target organic constituents, metals, and nutrients. Target organic constituents for the OC Pesticides TMDL include the OC Pesticides and PCBs listed as a footnote in Table 2. Target organic constituents for the Toxicity TMDL include the OP and pyrethroid pesticides listed as a footnote in Table 2. Target metals for the Metals and Selenium TMDL are listed as a footnote in Table 2. In-stream water column samples to measure compliance for the Toxicity, OC Pesticides, and Metals TMDLs are generally collected at the base of each of the subwatersheds used to assign waste load and load allocations, per the BPAs. In-stream water column samples to measure compliance for the Nitrogen TMDL are generally collected at the base of each listed reach. Toxicity Identification Evaluations (TIEs) are conducted on toxic samples as outlined in the Toxicity Testing and TIE section of the QAPP and results of these are discussed in the Toxicity Testing and TIE Evaluations Summary section of this report.
In-stream water column grab samples for salts were also collected quarterly during dry weather and twice during wet weather at the base of each of the subwatersheds specified in the Salts ¹ The QAPP includes an optional metals monitoring element to monitor additional sites in Mugu Lagoon. TMDL.² The grab sample results are used to develop statistical relationships between salt constituents and EC. These relationships are used to convert high frequency EC-sensor data to time-series of salt concentrations. Compliance with interim dry weather salt allocations is determined using monthly mean salt concentrations for dry weather developed from the time-series of data. Additionally, POTW effluent was monitored for compliance with the effluent limits presented in the Toxicity, OC Pesticides, Metals, and Salts TMDL BPAs. Currently, POTWs collect data required by each of their individual monitoring requirements. For additional TMDL constituents not currently sampled by the plants, CCWTMP crews perform sampling as necessary (efforts vary by plant and constituent group). All CCWTMP-required data for POTWs are compiled in this report. All efforts are made to include two wet weather water sampling events for compliance monitoring for the OC Pesticides, Toxicity, Metals, and Salts TMDLs during targeted storm events between October and April. Two wet weather events were completed in December 2014. Streambed sediment samples, collected annually in the freshwater portion of the watershed, were collected during the first event of this monitoring year and analyzed for sediment toxicity, general sediment quality constituents (GSQC), and target organics. Sediment samples in Mugu Lagoon are collected every three years per the approved QAPP. Sediment samples were collected during year seven and the data are presented in this report. Similar to the sediment sampling frequency, fish tissue samples were collected in the freshwater portions of the watershed in June 2015, and will continue to be collected annually for the CCWTMP. In addition, fish tissue and mussel samples were collected in Mugu Lagoon during year seven and the data are presented in this report. ## **INVESTIGATION MONITORING** Investigation monitoring focuses on identifying the contribution of constituents of concern from various land uses in the watershed and areas where toxicity has been observed to occur in the past that are not addressed by compliance monitoring. These sites are meant to compliment compliance monitoring efforts, fill data gaps where identified, and assist in identification of sources of constituents that may be leading to non-compliant conditions. The following describes the various types of investigation sites sampled during this reporting period. ## **Land Use Discharge Investigation** Land use discharge samples are generally collected concurrently (on the same day when possible) with compliance monitoring at representative agricultural and urban discharge sites generally located in each of the subwatersheds and analyzed for selected GWQC, metals, and target organic constituents (constituents monitored per site varies based upon sub-watershed). - ² The goal is to sample two wet weather events per monitoring year; however, only one storm was predicted that met the thresholds for monitoring. ## **Toxicity Investigation** As significant mortality had not occurred at the two sediment toxicity investigation sites during the first three years of the CCWTMP, ceasing investigation monitoring was recommended in the third year annual report. Toxicity testing at the investigation sites ceased until event 38, when it was resumed to support delisting of the identified reaches. The normal annual sampling frequency for this investigation is provided in Table 6. Sediment toxicity investigation monitoring for delisting occurred during Event 44. Water column toxicity sampling occurred during all events. In addition, the year-seven samples were analyzed for a suite of constituents (general chemistry, general nutrients, metals, PCBs, OC pesticides, OP pesticides, and pyrethroid pesticides), particle size distribution, and total organic carbon. #### **SAMPLING SITES** The QAPP details the justification and rationale for each of the sites sampled via the CCWTMP. Information on compliance monitoring sites, land use sites, and sample collection frequency is presented in Table 4 and Table 5 below. The general locations of the receiving water compliance monitoring sites (excluding Mugu Lagoon) for water, sediment, and fish tissue are presented in Figure 2 through Figure 4. The POTW effluent discharge sites are presented in Figure 5. The sampling sites in each figure are designated by sampled constituent group. The compliance monitoring sampling zones for sediment sampling and tissue sampling in Mugu Lagoon are shown in Figure 6 and Figure 7, respectively. The non-Mugu Lagoon water and sediment toxicity investigation sampling sites coincide with current and previous sampling programs in the CCW. Water and sediment toxicity investigation sampling sites and sampling frequency are presented in Table 6, while the general locations of the water and sediment toxicity investigation sampling sites in the CCW are presented in Figure 8. Land use monitoring sites are shown in Figure 9. The salt monitoring sites correspond with compliance sites or land use sites used for monitoring related to other TMDLs (Figure 2) with two exceptions: - 1. One of the salt compliance points is only used for salt monitoring (Conejo Creek at Baron Brothers Nursery). - 2. The continuous monitoring equipment (and the location of salt grab samples) for the Simi subwatershed was installed just downstream of the Tierra Rejada bridge, and is referred to as "07_TIERRA". The CCWTMP efforts summarized in the annual report correspond to the sites and locations listed below. As this program progresses, the number and location of sites may be revised if existing sites become inaccessible, if it is determined that alternative locations are needed, or if the number of land use stations needed to appropriately characterize discharges needs modification. Table 4. CCWTMP Compliance Monitoring and Nutrient Investigation Sites Annual Sampling Frequency | Sub- | | | | GPS Coordinates | | Water 1, 2 | | | | Sediment | | | Tissue ³ | | | | |----------------|-----------------------|-----------------|---|-----------------|------------------------------|------------|----------------|-----|-------|----------|------|-----|---------------------|-------------|----------------|--------------------| | Wat. | Site Id | Reach | Site Location | Lat | Long | Тох | Pests/
PCBs | Nut | Metal | Salts | GWQC | Tox | Pests
/PCBs | Metal | Pests/
PCBs | Metal ⁴ | | | 01_RR_BR | 1 | Ronald Reagan St Bridge | 34.1090 | -119.0916 | 6 | 6 | 6 | 6 | NA | 6 | NA | NA | NA | NA | NA | | | 01_BPT_3 | 1 | Located In Eastern Arm | _ | | NA | NA | NA | NA | NA | NA | _ | | | | | | | 01_BPT_6 | 1 | Located In Eastern Part Of
Western Arm | _ | | NA | NA | NA | NA | NA | NA | | | | | | | | 01_BPT_14 | 1 | Located In The Central Part
Of The Western Arm | | ite locations
ded as each | NA | NA | NA | NA | NA | NA | On | ce Every T
Years | Every Three | | | | Mugu
Lagoon | 01_BPT_15 | 1 | Located Between Estuary and Mouth of Lagoon | generaliz | resents a zed sample | NA | NA | NA | NA | NA | NA | | rears | | | | | | 01_SG_74 | 1 | Located In Western Part of
Central Lagoon | which a | on zone in
sample will | NA | NA | NA | NA | NA | NA | | | | | | | | Central
Lagoon | 1 | Sampled In Central Lagoon | be co | ollected. | NA | NA | NA | NA | NA | NA | | | | Once | e Every | | | Western Arm | 1 | Sampled In Western Arm
Of The Lagoon | | | ÑΑ | NA | NA | NA | NA | NA | | | | Three Years | | | Revolon | 04_WOOD 5 | 4 | Revolon Slough East Side
Of Wood Road | 34.1698 | -119.0958 | 6 | 6 | 6 | 6 | 6 | 6 | 1 | 1 | NA | 1 | 1 | | Slough | 05_CENTR | 5 | Beardsley Wash at Central
Avenue | 34.2300 | -119.1128 | NA | NA | 6 | NA | NA | 6 | NA | NA | NA | NA | NA | | | 02_PCH | 2 | Calleguas Creek NE Side of Hwy 1 Bridge | 34.1119 | -119.0818 | NA | NA | 4 | NA | NA | 4 | NA | NA | NA | NA | NA | | | 03_UNIV | 3 | Calleguas Creek At
Camarillo Street | 34.1795 | -119.0399 | 6 | 6 | 6 | 6 | 6 | 6 | 1 | 1 | NA | 1 | NA | | Calleguas | 03D_CAMR ⁶ | 3 | Camrosa Water
Reclamation Plant | 34.1679 | -119.0530 | 4 | 4 | 4 | 4 | 4 | 4 | NA | NA | NA | NA | NA | | | 9A_HOWAR ⁷ | 9B ⁷ | Conejo Creek At Howard
Road Bridge | 34.1931 | -119.0025 | NA | NA | 6 | NA | 6 | NA | NA | NA | NA | NA | NA | | | 9AD_CAMA ⁷ | 9B ⁷ | Camarillo Water
Reclamation Plant | 34.1938 | -119.0017 | 4 | 4 | 4 | 4 | 4 | 4 | NA | NA | NA | NA | NA | | Conejo | 9B_ADOLF ⁷ | 9A ⁷ | Conejo Creek At Adolfo
Road | 34.2137 | -118.9894 | 6 | 6 | 6 | NA | NA | 6 | NA | 1 | NA | 1 | NA | | Sub- | | | | GPS Coordinates Water 1, | | | iter 1, 2 | er ^{1, 2} | | | Sediment | | | Tissue ³ | | | |--------|-----------------------|-----------------|---|--------------------------|-----------|-----|----------------|--------------------|-------|-------|----------|-----|----------------|---------------------|----------------|--------------------| | Wat. | Site Id | Reach | Site Location | Lat | Long | Tox | Pests/
PCBs | Nut | Metal | Salts | GWQC | Tox | Pests
/PCBs | Metal | Pests/
PCBs | Metal ⁴ | | | 10_GATE | 10 | Conejo Creek Hill Canyon
Below N Fork | 34.2178 | -118.9281 | NA | NA | 6 | NA | NA | 6 | NA | NA | NA | NA | NA | | | 10D_HILL | 10 | Hill Canyon Wastewater
Treatment Plant | 34.2113 | -118.9218 | 4 | 4 | 4 | 4 | 4 | 4 | NA | NA | NA | NA | NA | | Conejo | 12_PARK | 12 | Conejo Creek North Fork above Hill Canyon | 34.2144 | -118.915 | NA | NA | 4 | NA | NA | 4 | NA | NA | NA | NA | NA | | | 13_BELT | 13 | Conejo Creek S Fork
Behind Belt Press
Building | 34.2078 | -118.9194 | NA | NA | 4 | NA | NA | 4 | NA | NA | NA | NA | NA | | | 9B_BARON ⁷ | 9A ⁷ | Conejo Creek at Baron
Brothers Nursery | 34.2365 | -118.9643 | NA | NA | NA | NA | 6 | NA | NA | NA | NA | NA | NA | | Las | 06_SOMIS | 6 | Arroyo Las Posas Off
Somis Road | 34.2540 | -118.9925 | 6 | 6 | 6 | NA | NA | 6 | NA | 1 | NA | 1 | NA | | Posas | 06D_MOOR 6 | 6 | Ventura County
Wastewater Treatment
Plant | 34.2697 | -118.9357 | 4 | 4 | 4 | 4 | 4 | 4 | NA | NA | NA | NA | NA | | | 07_HITCH | 7 | Arroyo Simi East Of Hitch
Boulevard | 34.2716 | -118.9234 | 6 | 6 | 6 | NA | NA | 6 | NA | 1 | NA | 1 | NA | | Arroyo | 07_TIERRA | 7 | Arroyo Simi downstream from Tierra Rejada Blvd. | 34.2701 | -118.9058 | NA | NA | NA | NA | 6 | NA | NA | NA | NA | NA | NA | | Simi | 07_MADER | 7 | Arroyo Simi at Madera Ave. | 34.2778 | -118.7958 | NA | NA | 6 | NA | NA | 6 | NA | NA | NA | NA | NA | | | 07D_SIMI | 7 | Simi Valley Water Quality
Control Plant | 34.2848 | -118.8128 | 4 | 4 | 4 | 4 | 4 | 4 | NA | NA | NA | NA | NA | NA - Not Analyzed Tox – Samples will be analyzed for toxicity and OP and pyrethroid pesticides as listed in Table 2. Toxicity in water will not be analyzed at 01_RR_BR or at the POTWs. Pests/PCBs - Samples will be analyzed for OC pesticides and PCBs as listed in Table 2. Chlorpyrifos will be analyzed in tissue at 04_WOOD as it is on the 303(d) list for this reach. Nut – Samples will be analyzed for Nutrients as listed in Table 2. Metal – Samples will be analyzed for Metals as listed in Table 2. GWQC - Samples will be analyzed for General Water Quality Constituents as listed in Table 2. - 1. Sites listed for 6 sampling events per monitoring year refers to 4 quarterly dry events and the attempt to sample 2 additional wet events.. - 2. Grab samples for salts at compliance sites are not directly used to determine compliance with salts WQOs, but are used to develop statistical relationships between EC and salt constituents (Appendix C). - 3. Tissue samples will be collected in the same location as water and sediment samples. Samples may be collected elsewhere if no fish are found at pre-established sample stations. - 4. Bird egg samples will be collected and analyzed for mercury and selenium in the Mugu Lagoon subwatershed. - 5. TIEs will not be performed at 04 WOOD. - 6. The Camrosa Water Reclamation Plant and the Ventura County Wastewater Treatment Plant are not currently discharging. However, these sites are included in case they must be sampled at a later date. - 7. In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations. Table 5. CCWTMP Land Use Monitoring Sites and Sample Frequency | Sub-Wat. | C:t~ ID | Dooole | Site | GPS Coordinat | | oordinates | Pests/ | Nivitrianta | Motol | Calte | GWQC | |------------------------------|------------------------|---|---------|---|---------|------------|--------|-------------|-------|-------|------| | | Site ID | Reach | Type 1 | Site Location | Lat | Long | PCBs | Nutrients | Metal | Salts | GWQC | | Mugu
Lagoon | 01T_ODD2_DCH | 1 | Ag | Duck Pond/Mugu/Oxnard Drain #2 S. of Hueneme Rd | 34.1395 | -119.1185 | 6 | 6 | 6 | NA | 6 | | (| 04D_WOOD | 4 | Ag | Agricultural Drain on E. Side of Wood Rd N. of Revolon | 34.1708 | -119.0963 | 6 | 6 | 6 | 6 | 6 | | Pavalan | 05D_SANT_
VCWPD | 5 | Ag | Santa Clara Drain at VCWPD Gage
781 prior to confluence with
Beardsley Channel | 34.2426 | -119.1137 | 6 | 6 | 6 | NA | 6 | | Ca
04D_VENTURA 4 Urban an | | Camarilo Hills Drain at Ventura Blvd
and Las Posas Rd at VCWPD Gage
835 | 34.2162 | -119.0685 | 6 | NA | 6 | 6 | 6 | | | | Calleguas (| 02D_BROOM | 2 | Ag | Discharge to Calleguas Creek at Broome Ranch Rd. | 34.1433 | -119.0713 | 6 | 6 | 6 | NA | 6 | | Ç | 9BD_GERRY ² | 9A ² | Ag | Drainage ditch crossing Santa Rosa
Rd at Gerry Rd | 34.2358 | -118.9446 | 6 | 6 | 6 | 6 | 6 | | Conejo 9 | 9BD_ADOLF ² | 9A ² | Urban | Urban storm drain passing under N. side of Adolfo Rd approximately 300 meters from Reach 9B | 34.2148 | -118.9951 | 6 | NA | 6 | 6 | 6 | | 1 | 13_SB_HILL | 13 | Urban | South Branch Arroyo Conejo on S.
Side of W Hillcrest | 34.1849 | -118.9075 | 6 | NA | NA | 6 | 6 | | Las
Posas | 06T_FC_BR | 6 | Ag | Fox Canyon at Bradley Rd - just north of Hwy 118 | 34.2646 | -119.0111 | 6 | 6 | NA | NA | 6 | | L
Arroyo | 07D_HITCH_
LEVEE_2 | 7 | Ag | 2 nd corrugated pipe discharging on
north side of Arroyo Simi flood control
levee off of Hitch Blvd just beyond 1 st
power pole. | 34.2716 | -118.9219 | 6 | 6 | NA | 6 | 6 | | Simi (| 07D_CTP | 7 | Urban | Flood control channel in Country Trail
Park | 34.2646 | -118.9075 | 6 | NA | NA | 6 | 6 | | (| 07T_DC_H | 7 | Urban | Dry Canyon at Heywood Street | 34.2683 | -118.7600 | 6 | NA | NA | NA | 6 | Ag = Agricultural Land Use Site Urban = Urban Land Use Site NA - Not Analyzed ^{1.} Specific constituents analyzed under each category are listed in Table 2. ^{2.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations. Table 6. Toxicity Investigation Monitoring Sites and Sampling Frequency | | | | | GPS Co | ordinates | | | | |----------------|-----------------------|-----------------|--|---------|-----------|-----|------------|------| | Subwatershed | Site ID | Reach | Site Location | Lat | Long | Tox | Pests/PCBs | GWQC | | Sediment Toxic | city Investigation | 1 | | | | | | | | Callegues | 02_PCH | 2 | Calleguas Creek Northeast
Side Of Highway 1 Bridge | 34.1119 | -119.0818 | 1 | 1 | 1 | | Calleguas | 9A_HOWAR ² | 9B ² | Conejo Creek At Howard Road
Bridge | 34.1931 | -119.0025 | 1 | 1 | 1 | | Water Toxicity | Investigation 1, 3 | | | | | | | | | Consis | 10_GATE | 10 | Conejo Creek Hill Canyon
Below North Fork Of Conejo
Creek | 34.2178 | -118.9281 | 5 | 5 | 5 | | Conejo | 13_BELT | 13 | Conejo Creek South Fork
Behind Hill Canyon Belt Press
Building | 34.2078 | -118.9194 | 4 | 4 | 4 | Tox – Samples will be analyzed for toxicity, OP, and pyrethroid pesticides in water and toxicity, OP, and pyrethroid pesticides in sediment as listed in Table 2. Pests/PCBs – Samples will be analyzed for OC pesticides and PCBs as listed in Table 2. GWQC – Samples will be analyzed for General Water Quality Constituents as listed in Table 2. ^{1.} This table depicts the normal toxicity investigation sampling frequency. During year 5, this investigation was put on hold and then re-started as described in text. ^{2.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations. ^{3.} Includes two wet events per site; except during years when there is insufficient rainfall to trigger sampling. Figure 2. CCWTMP Compliance Monitoring Sampling Sites – Receiving Water Figure 3. CCWMTP Compliance Monitoring Receiving Water Sampling Sites – Freshwater Sediment Figure 4. CCWMTP Compliance Monitoring Sampling Sites – Freshwater Fish Tissue Figure 5. CCWMTP Compliance Monitoring Sampling Sites - POTW Effluent Figure 6. CCWMTP Compliance Monitoring Sampling Zones – Mugu Lagoon Sediment 21 Figure 7. CCWTMP Compliance Monitoring Sampling Zones – Mugu Lagoon Tissue Figure 8. CCWTMP Toxicity Investigation Receiving Water Sampling Sites – Water and Sediment Figure 9. CCWTMP Land Use Sampling Sites # Monitoring Data Summary To summarize the CCW TMDL monitoring data, box plots have been created for site and constituent combinations representing the data gathered over the entire monitoring program. The data presented includes all constituents with TMDL limits for water or sediment at the sites where the constituents were analyzed. Where TMDL limits are effective, those thresholds have been identified for the sites where they apply. As appropriate, data for constituents with specific dry or wet weather limits are presented separately. Data collected during year seven, which is the reporting period for this document, have been overlain on the box plots as circles. The box plots include all of the data collected during this program (2008-2015). This was done to allow for easy comparison between recent data and what have been collected overall. The seventh year data are presented in tabular form below each box plot. Each figure of box plots presents data from either receiving water sites or land use sites. The receiving water sites are color coded by subwatershed as shown in Table 7. Land use and POTW sites are displayed together and grouped by type as presented in Table 8. Fish tissue data are not displayed as box plots. Fish tissue data are presented in tables due to the small number of samples and to preserve the species information associated with each sample. Toxicity data and TIE results are summarized in Appendix D. Summaries of the 2014-15 monitoring events are included as Appendix A. Some TMDL constituents were never, or rarely detected (less than 2 percent detection rate) and therefore, did not warrant a data summary. The constituents, which were never detected, include: #### In Water: In Sediment: - Endosulfan II - Endrin - Endrin - BHC, gamma Rarely detected constituents in water are as follows: - Aldrin
(four detects, none this year) - Dieldrin (six detects, three this year) - Endosulfan I (three detects, none this year) - BHC, gamma (three detects, none this year) - Total PCBs (five detects, three this year) Rarely detected constituents in sediment are as follows: • Dieldrin (one detect, none this year) Table 7. Receiving Water Sites Color Coded by Subwatershed | Subwatershed | Reach | Site ID | |------------------|-----------------------|-----------| | | | 01_BPT_14 | | | | 01_BPT_15 | | Mugu Lagoon | Reach 1 | 01_BPT_3 | | Wugu Lagoon | Reacti | 01_BPT_6 | | | | 01_RR_BR | | | | 01_SG_74 | | | Reach 2 | 02_PCH | | Calleguas | Reach 3 | 03_UNIV | | | Reach 9B ¹ | 9A_HOWAR | | Revolon Slough | Reach 4 | 04_WOOD | | Revolori Slougii | Reach 5 | 05_CENTR | | Las Posas | Reach 6 | 06_SOMIS | | | | 07_HITCH | | Arroyo Simi | Reach 7 | 07_MADER | | | | 07_TIERRA | | | Reach 9A ¹ | 9B_ADOLF | | | Reach 9A ¹ | 9B_BARON | | Conejo | Reach 10 | 10_GATE | | | Reach 12 | 12_PARK | | | Reach 13 | 13_BELT | In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations. Table 8. Land Use and POTW Sites Color Coded by Type #### **Urban Land Use (MS4) Sites:** | Reach 4 | 04D_VENTURA | |------------|------------------------| | Reach 7 | 07D_CTP | | Reach 7 | 07T_DC_H | | Reach 9A 1 | 9BD_ADOLF ¹ | | Reach 13 | 13_SB_HILL | #### Ag Land Use Sites: | Reach 1 | 01T_ODD2_DCH | |-----------------------|------------------------| | Reach 2 | 02D_BROOM | | Reach 4 | 04D_WOOD | | Reach 5 | 05D_SANT_VCWPD | | Reach 6 | 06T_FC_BR | | Reach 7 | 07D_HITCH_LEVEE_2 | | Reach 9A ¹ | 9BD_GERRY ¹ | #### **POTW Sites:** | Reach 7 | 07D_SIMI | |-----------------------|-----------------------| | Reach 9B ¹ | 9AD_CAMA ¹ | | Reach 10 | 10D_HILL | ^{1.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations. #### OC PESTICIDES TMDL DATA SUMMARY The following figures present OC pesticides data in both water and sediment. Presently, only the POTWs have effective final limits in water, but data for all sites is provided since the TMDL specifies final targets for OC pesticides in water. Effective interim allocations for agriculture and waste load allocations for urban dischargers are provided in the appropriate OC pesticides in sediment figures. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was detected but not quantifiable (DNQ). Values in the tables within each figure with a "<" preceding it, indicate the constituent was not detected (ND) at MDL for that constituent. Values identified as "--" in the tables indicate no samples were collected at those sites for those events. Figure 10. 4,4'-DDD Water Column Concentrations in Receiving Water Sites: 2008-2015 4-4'-DDD in Water from Urban, Ag, & POTW Sites: 2008-2015 Figure 11. 4,4'-DDD Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 12. 4,4'-DDE Water Column Concentrations in Receiving Water Sites: 2008-2015 # 4-4'-DDE in Water from Urban, Ag, & POTW Sites: 2008-2015 Figure 13. 4,4'-DDE Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 # 4-4'-DDT in Receiving Water Sites: 2008-2015 Figure 14. 4,4'-DDT Water Column Concentrations in Receiving Water Sites: 2008-2015 # 4-4'-DDT in Water from Urban, Ag, & POTW Sites: 2008-2015 Figure 15. 4,4'-DDT Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 16. Total Chlordane Water Column Concentrations in Receiving Water Sites: 2008-2015 Figure 17. Total Chlordane Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 18. Toxaphene Water Column Concentrations in Receiving Water Sites: 2008-2015 #### Toxaphene in Water from Urban, Ag, & POTW Sites: 2008-2015 Figure 19. Toxaphene Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 20. 4,4'-DDD Sediment Concentrations in Receiving Water Sites: 2008-2015 ## 4-4'-DDE in Sediment Sites: 2008-2015 Figure 21. 4,4'-DDE Sediment Concentrations in Receiving Water Sites: 2008-2015 # 4-4'-DDT in Sediment Sites: 2008-2015 Figure 22. 4,4'-DDT Sediment Concentrations in Receiving Water Sites: 2008-2015 # Total Chlordane in Sediment Sites: 2008-2015 - MS4 Interim WLA - Ag Interim LA ○ DNQ ▲ ND Figure 23. Total Chlordane Sediment Concentrations in Receiving Water Sites: 2008-2015 ## Toxaphene in Sediment Sites: 2008-2015 Figure 24. Toxaphene Sediment Concentrations in Receiving Water Sites: 2008-2015 #### **METALS TMDL DATA SUMMARY** The following figures present metals water quality data from receiving water, agricultural, urban, and POTW monitoring sites. Currently effective total metals interim load allocations and waste load allocations differ for wet and dry weather, therefore the data for each of these conditions is provided separately. Interim POTW waste load allocations for total mercury are in load form and are therefore calculated and presented in the compliance section of the report. The Metals TMDL specifies final targets for both dissolved copper and zinc. Dissolved concentrations for these two metals have been plotted for reference. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding them, indicate the constituent was ND at the MDL for that constituent. Values identified as "--" in the tables indicate no samples were collected at those sites for those events. Figure 25. Total Copper Dry Weather Concentrations in Receiving Water Sites: 2008-2015 Figure 26. Total Copper Stormwater Concentrations in Receiving Water Sites: 2008-2015 Figure 27. Total Copper Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 28. Total Copper Wet Weather Concentrations in Urban and Ag Sites: 2008-2014 Figure 29. Dissolved Copper Concentrations in Receiving Water Sites: 2008-2015 Figure 30. Dissolved Copper Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 31. Total Mercury Concentrations in Receiving Water Sites: 2008-2015 Figure 32. Total Mercury Concentrations in Urban and Ag Sites: 2008-2015 Figure 33. Total Nickel Dry Weather Concentrations in Receiving Water Sites: 2008-2015 Figure 34. Total Nickel Stormwater Concentrations in Receiving Water Sites: 2008-2015 Figure 35. Total Nickel Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 36. Total Nickel Stormwater Concentrations in Urban and Ag Sites: 2008-2015 Figure 37. Dissolved Nickel Concentrations in Receiving Water Sites: 2008-2015 Figure 38. Dissolved Nickel Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 39. Total Selenium Dry Weather Concentrations in Receiving Water Sites: 2008-2015 Figure 40. Total Selenium Stormwater Concentration in Receiving Water Sites: 2008-2015 Figure 41. Total Selenium Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 42. Total Selenium Stormwater Concentrations in Urban and Ag Sites: 2008-2015 Figure 43. Dissolved Zinc Concentrations in Receiving Water Sites: 2008-2015 62 Figure 44. Dissolved Zinc Concentrations in Urban, Ag, and POTW Sites: 2008-2015 #### **TOXICITY TMDL** For the Toxicity TMDL, urban dischargers' and POTWs' final WLAs are effective as well as interim LAs for agricultural dischargers. The compliance points for these allocations are in the receiving waters at the base of the subwatersheds and are shown on the box plots for the appropriate site locations. Data for chlorpyrifos and diazinon has been separated into dry weather and stormwater since the allocations differ for the two conditions. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding them, indicate the constituent was ND at the MDL for that constituent. Values identified as "--" in the tables indicate no samples were collected at those sites for those events. Figure 45. Chlorpyrifos Dry Weather Concentrations in Receiving Water Sites: 2008-2015 Figure 46. Chlorpyrifos Stormwater Concentrations in Receiving Water Sites: 2008-2015 Figure 47. Chlorpyrifos Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Chlorpyrifos in Water from Urban and Ag Sites: 2008-2015 Stormwater Figure 48. Chlorpyrifos Stormwater Concentrations in Urban and Ag Sites: 2008-2015 ## Diazinon in Receiving Water Sites: 2008-2015 Dry Weather Figure 49. Diazinon Dry Weather Concentrations in Receiving Water Sites: 2008-2015 Figure 50. Diazinon Stormwater Concentrations in Receiving Water Sites: 2008-2015 #### Diazinon in Water from Urban, Ag, & POTW Sites: 2008-2015 Dry Weather Figure 51. Diazinon Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2015 Figure 52. Diazinon Stormwater Concentrations in Urban and Ag Sites: 2008-2015 ## **NUTRIENTS TMDL** Final targets and allocations are effective for the Nutrients TMDL. The applicable targets for each monitoring site are presented in the figures below. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding
them, indicate the constituent was ND at the MDL for that constituent. Values identified as "--" in the tables indicate no samples were collected at those sites for those events. ### Ammonia N in Receiving Water Sites: 2008-2015 Final Target 1-fit Avg - Final Target: 30-day Avg • Year 7 Data 9 DNQ • ND 10.0 Concentration (mg/L as N) UT WADER 01 RR BR OTH TO PARK ! 計 世間 D Exent Dote Type 0.19 <0.02 0.23 <0.02 Aug-14 Ony 44 0.08: 0:63 0.12 <0.02 0.04 0.22 ¥0.02 < 0.02 Nov-14 Day. 45 0.7 0.21 0.09 1.28 0.22 0.11 0.07 0.04 0.2 0.16 0.65 0.03 0.1 Owc-14 Stom 66. 0.54 0.33 0.37 0.47 0.44 0.4 0.58 0.37 0.42 Figure 53. Ammonia-N Concentrations in Receiving Water Sites: 2008-2015 0.6 < 0.02 < 0.02 0.51 < 0.02 0.3 0.08 0.12 0.34 0.05 0.05 0.41 0.03 0.04 0.28 0.56 0.41 50.02 <0.02 0.46 < 0.02 0.04 47 48 49 0.91 < 0.02 0.12 0.02 0.14 0.55 0.13 80.0 0.44 0.38 Dec-14 Feb-15 May-15 Storm Dry Dry <0.02 <0.02 Figure 54. Ammonia-N Concentrations in Ag and POTW Sites: 2008-2015 #### Final Target: • Year 7 Data 0 DNG 100 4 Concentration (mg/L as N) HR BR F115 OT MADE Mary II N. W. D. LINE 8 22 5 :Dade: Type Event. 5.63 App 14 6.35 25.92 10.09 4.1 5.69. 0.31 44. 6.82 1.73 46.9 32.4 Dry 26.65 19.67 12.72 Nov-14 Ory 45 7.31 8.31 47,33 9.68 9.80 4.79 6.29 5.75 0.39 0.95 46 28.51 31 5.56 8.89 9.49 3-67 0.93 Dec-14 Storm 1.14 0.85 Gec-14 47 5.25 1.92 371 4.68 1.33 1.29 1:32 1.75 1.08 Nitrate-N in Receiving Water Sites: 2008-2015 Figure 55. Nitrate-N Concentrations in Receiving Water Sites: 2008-2015 11.08 29.9 10.1 42.65 44.6 10.77 9.92 3.44 5.15 5.56 5.70 4.94 5.24 0.36 0.00 48 49 0.05 13.11 6.4 5.84 6.25 8.54 17.96 16.29 Storm Dry. Feb. 15 May -15: 0.61 0.28 # Nitrate-N in Water from Ag & POTW Sites: 2008-2015 Figure 56. Nitrate-N Concentrations in Ag and POTW Sites: 2008-2015 # Final Target . Year 7 Data . DNO . NO 1.00 Concentration (mg/L as N) No detected data 9 0.01 -88 8K OTH TO GATE THE PARTY THE STATE 010 2 Date Type Event # Nitrite as N in Receiving Water Sites: 2008-2015 0.07 0.03 0.02 0.01 0.04 0.05 ×0.01 0.05 0.03 0.01 0.05 0.33 90.01 0.02 0.01 0.01 <0.01 < 0.01 0.17 0.19 0.02 -0.01 0.12 0.1 Figure 57. Nitrite-N Concentrations in Receiving Water Sites: 2008-2015 0.29 0.05 0.02 0.00 0.1 0.25 0.03 0.04 0.01 0.04 0.61 0.78 0.02 0.03 0.34 0.44 44 45 46 47 48 49 Aug-24 Novi 14 Dec-14 Dec.14 Feb-15 May 15 Dry Dry Storm Storm Dev Ovy. 0.32 0.53 <0.01 < 0.01 < 0.01 0.14 *D.01 +0.01 +0.01 +0.01 40.01 0.13 0.02 0.02 0.07 <0.01 0.95 0.1 0.04 0.06 < 0.01 -0.01 <0.01 < 0.01 <0.01 -0.01 0.03 <0.01 Figure 58. Nitrite-N Concentrations in Ag and POTW Sites: 2008-2015 # Nitrate-N + Nitrite-N in Receiving Water Sites: 2008-2015 Figure 59. Nitrate-N + Nitrite-N Concentrations in Receiving Water Sites: 2008-2015 ### Ag Finel LA - POTW Finel WLA MDEL . Year 7 Date 100 -Concentration (mg/L as N) OZD HITCH LEVEE 2 060 SANT VOWPD ONT DODG DON WOORE DO DOOM UN 9BD GERRY DAD CANA WD SDM 118H 001 Date Type Event 62.71 27.93 41.48 6.414 8,12 7.2 Aug-14 Diry 44 ----------6.13 7.3 Nov-14 Dry 45 63.25 6.04 34.35 8.12 ... 9.04 13.99 23.2 Dec-14 Storm 46 --12.43 10.92 3.24 -100 and the 4.9 11.56 3.5 11.55 2.7 Dec-14 Storm 47 12.58 2.91 Feb-15 48 56.34 4.53 9.28 8.11 8.23 8 6.29 Dry Nitrate-N + Nitrite-N in Water from Ag & POTW Sites: 2008-2015 Figure 60. Nitrate-N + Nitrite-N Concentrations in Ag and POTW Sites: 2008-2015 37.18 0.28 Diry 49 67.3 May-15 74 6.33 7.74 ### SALTS TMDL For the Salts TMDL, compliance with interim dry weather salt allocations is determined using monthly mean salt concentrations for dry weather developed from the time-series of data collected at receiving water sites. Bolded values in the tables within each figure indicate the concentration was above the interim MS4 WLA and the interim LA for that constituent. Italicized values in the tables within each figure indicate the concentration was above the interim MS4 WLA for that constituent. Figure 61. TDS Monthly Means for Receiving Water Sites Collected During Dry Weather Figure 62. Chloride Monthly Means for Receiving Water Sites Collected During Dry Weather Figure 63. Sulfate Monthly Means for Receiving Water Sites Collected During Dry Weather Figure 64. Boron Monthly Means for Receiving Water Sites Collected During Dry Weather Figure 65. Total Dissolved Solids in Water from Urban and Ag Sites: 2011-2015 Figure 66. Chloride in Water from Urban & Ag Sites: 2011-2015 Figure 67. Sulfate in Water from Urban & Ag Sites: 2011-2015 Figure 68. Boron in Water from Urban & Ag Sites: 2011-2015 Figure 69. TDS in Water from POTW Sites: 2012-2015 Figure 70. Sulfate in Water from POTW Sites: 2012-2015 Figure 71. Chloride in Water from POTW Sites: 2012-2015 Figure 72. Boron in Water from POTW Sites: 2012-2015 ## **TISSUE DATA** Tissue data is provided in the following tables for both Mugu Lagoon and freshwater monitoring locations. Tissue samples are only collected in Mugu Lagoon every three years; therefore data from monitoring years one, four, and seven are reported. For all tables, only those constituents that have been detected in at least one sample are included. # **Mugu Lagoon Tissue Data** Table 9. Mugu Lagoon – Central Lagoon Tissue Data 1,2 | | | Lipids | | | | OC Pe | esticid | es | | | | PCBs | Ме | tals | |-----------|---|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|------------------|------------------|-------------------| | Date | Tissue Sample
Type | Percent
Lipids | Chlordane
-alpha | Chlordan
e-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Arochlor
1254 | Total
Mercury | Total
Selenium | | | | % | ng/g μg/g | μg/g | | 8/21/2008 | Composite Mussel
Sample | 0.9 | | | 7.5 | | ND | 13.4 | 125 | ND | 94.4 | ND | ND | 0.4 | | 8/21/2008 | Whole Fish Compo -site Top Smelt (Atherinops affinis) | | | | ND | | 11.7 | 20.9 | 406 | 41.7 | 294 | ND | 0.02 | 0.6 | | 8/18/2011 | Composite Mussel
Sample | 1.7 | | | DNQ | | 9.4 | ND | 118 | ND | DNQ | ND | 0.0039 | 0.8 | | | Whole Fish Top Smelt (Atherinops affinis) | 6.3 | 8.3 | DNQ | DNQ | DNQ | 14.6 | 45.5 | 537.5 | 72.2 | ND | ND | 0.05 | 2.9 | | 5/14/2015 | Whole
Fish
Sample (Atherinops
#2 affinis) | 7.6 | DNQ | ND | DNQ | DNQ | 15.2 | 31 | 435.9 | 24.8 | ND | ND | 0.05 | 1.9 | | | Whole
Fish Top Smelt
(Atherinops
sample affinis) | 9.2 | ND | ND | DNQ | ND | 7.7 | DNQ | 74.1 | ND | ND | ND | 0.07 | 1.9 | | | | Lipids | | | | OC Pe | sticid | es | | | | PCBs | Ме | tals | |-----------|--|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|------------------|------------------|-------------------| | Date | Tissue Sample
Type | Percent
Lipids | Chlordane
-alpha | Chlordan
e-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Arochlor
1254 | Total
Mercury | Total
Selenium | | | | % | ng/g μg/g | μg/g | | | Whole
Fish Top Smelt
Sample (Atherinops
#4 affinis) | | 39.1 | 18.2 | 9.2 | 22.3 | 32.5 | 300.3 | 3620.4 | 504.7 | 891.9 | ND | 0.07 | 4.4 | | | Whole
Fish Top Smelt
Sample (Atherinops
#5 affinis) | | ND | ND | ND | DNQ | 6.9 | DNQ | 109.4 | DNQ | ND | ND | 0.06 | 2.4 | | | Whole
Fish Top Smelt
Sample (Atherinops
#6 affinis) | | 5.2 | DNQ | DNQ | DNQ | DNQ | 44.1 | 536.7 | 51.3 | 92.1 | ND | 0.04 | 2.7 | | 5/14/2015 | Whole Grass Fish Rockfish Sample (Sebastes #7 rastrelliger) | 12.2 | 31.8 | 8.9 | DNQ | 20.5 | 11.6 | 255.9 | 6170.6 | 215.3 | 227.9 | ND | 0.3 | 2. 7 | | 3/14/2013 | Whole Grass Fish Rockfish Sample (Sebastes #8 rastrelliger) | 7.9 | 15.6 | DNQ | ND | 9.5 | 5.4 | 122.7 | 3367.4 | 155 | 152.1 | ND | 0.3 | 2.5 | | | Whole Grass Fish Rockfish Sample (Sebastes #9 rastrelliger) | 8.4 | 11.9 | DNQ | DNQ | 8.2 | ND | 83.7 | 2626.1 | 94.5 | ND | ND | 0.3 | 2.6 | | | Whole Grass Fish Rockfish Sample (Sebastes #10 rastrelliger) | 16.3 | 24.4 | 7.3 | 5.5 | 15.2 | 13.6 | 156.5 | 3203.8 | 131.2 | 168.8 | ND | 0.3 | 2.6 | | | Whole Grass Fish Rockfish Sample (Sebastes #11 rastrelliger) | 18.3 | ND | ND | ND | DNQ | 19.1 | 44.9 | 1099.6 | 28.3 | ND | ND | 1.1 | 2.0 | | | | Lipids | | | | OC Pe | esticid | es | | | | PCBs | Ме | etals | |---------------|--|-------------------|---------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|------------------|------------------|-------------------| | Date | Tissue Sample
Type | Percent
Lipids | Chlordane
-alpha | Arochlor
1254 | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Arochlor
1254 | Total
Mercury | Total
Selenium | | | | % | ng/g μg/g | μg/g | | 5 /4 A /004 5 | Whole Barred Fish Sandbass Sample (<i>Paralabrax</i> #12 nebulifer) | 17.3 | 14.3 | ND | ND | 6.3 | 6.9 | 82.4 | 2632.9 | 221.9 | 273.96 | ND | 0.3 | 2.5 | | 5/14/2015 | Whole Barred Fish Sandbass Sample (Paralabrax #13 nebulifer) | 9.9 | ND | ND | ND | DNQ | 6.5 | 24.5 | 566.1 | 46.1 | ND | ND | 0.3 | 2.1 | Only constituents with detected values are included in the table. Units are in wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 10. Mugu Lagoon – Western Arm Tissue Data 1,2 | | | | Lipids | | | | OC Pe | sticide | s | | | | PCBs | Ме | etals | |-----------|----------------------------------|--|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------
-----------------|------------------|-------------------| | Date | Tissue Sa | ample Type | Percent
Lipids | Chlordane
-alpha | Chlordane-
gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | Total
Mercury | Total
Selenium | | | | | % | ng/g μg/g | μg/g | | 8/19/2008 | | ite Mussel
mple | 1.2 | ND | ND | ND | ND | ND | 6.6 | 44 | ND | ND | ND | DNQ | 0.4 | | 8/19/2008 | Composite
Bait Fish
Sample | Top Smelt
(Atherinops
affinis) | 1.9 | ND | ND | ND | ND | ND | 26.8 | 147 | ND | ND | ND | DNQ | 0.5 | | 8/19/2008 | Flat Fish
Fillet
Sample | Diamond
Turbot
(Hypsopsett
a guttulata) | 0.4 | ND | ND | ND | ND | ND | ND | 51 | ND | ND | ND | DNQ | 0.9 | | 8/19/2008 | Whole
Perch Fish
Sample | Shiner
Surfperch
(Cymatogas
ter
aggregate) | 2.8 | 12.7 | DNQ | 9.2 | ND | ND | 139 | 664 | 79.4 | 117 | 55 | DNQ | 0.5 | | 8/18/2011 | | ite Mussel
mple | 1 | ND | ND | DNQ | DNQ | DNQ | ND | 105 | ND | ND | ND | 0.01 | 0.5 | | | Whole
Fish
Sample #1 | Top Smelt
(Atherinops
affinis) | 4.4 | 12.4 | 8.8 | DNQ | 9.9 | ND | 102 | 1325.4 | 34.3 | 280.5 | ND | 0.05 | 3 | | 5/14/2015 | Whole
Fish
Sample #2 | Top Smelt
(Atherinops
affinis) | 5.1 | ND | ND | DNQ | 6.9 | DNQ | 28.1 | 350.8 | DNQ | ND | ND | 0.06 | 1.8 | | | Whole
Fish
Sample #3 | Top Smelt
(Atherinops
affinis) | 3.9 | DNQ | ND | DNQ | 6 | ND | 23 | 479.5 | DNQ | ND | ND | 0.06 | 1.9 | | | Whole
Fish
Sample #4 | Top Smelt
(Atherinops
affinis) | 3.3 | DNQ | ND | DNQ | 5.3 | ND | 17.2 | 325.3 | DNQ | ND | ND | 0.1 | 1.6 | | | | | Lipids | | | | OC Pe | sticide | es. | | | | PCBs | Me | tals | |-----------|-------------------------------------|---|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------|------------------|-----------------------| | Date | Tissue Sa | mple Type | Percent
Lipids | Chlordane-
alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | Total
Mercury | Total
Seleniu
m | | | | | % | ng/g μg/g | μg/g | | | Whole
Fish
Sample #5 | Top Smelt
(Atherinops
affinis) | 3.7 | DNQ | ND | DNQ | 5.2 | ND | 27.5 | 342.6 | 5.4 | ND | ND | 0.09 | 1.5 | | | Whole
Fish
Sample #6
Whole | Top Smelt
(Atherinops
affinis) | 6.4 | DNQ | DNQ | 15.6 | 12.7 | 17.4 | 10.5 | 279.4 | 5.7 | ND | ND | 0.07 | 2.1 | | | Fish Sample #7 Whole | Top Smelt
(Atherinops
affinis)
Top Smelt | 2.7 | DNQ | ND | DNQ | DNQ | ND | 19.1 | 591 | 6.9 | ND | ND | 0.08 | 1.7 | | | Fish
Sample #8 | (Atherinops affinis) | 6.8 | ND | ND | 18.8 | 13.7 | 10.1 | 16.1 | 88.4 | DNQ | ND | ND | 0.07 | 1.8 | | 5/14/2015 | Whole
Fish
Sample #9 | Top Smelt
(Atherinops
affinis) | 3.6 | 8.5 | DNQ | DNQ | 5 | DNQ | 63.2 | 1300.9 | 69.8 | 157.1 | ND | 0.07 | 3.9 | | | Whole
Fish
Sample
#10 | Top Smelt
(Atherinops
affinis) | 7.3 | DNQ | ND | DNQ | DNQ | ND | 14.7 | 250.9 | 9.9 | 86.8 | ND | 0.1 | 1.7 | | | Whole
Fish
Sample
#11 | Top Smelt
(Atherinops
affinis) | 3.6 | DNQ | ND | DNQ | DNQ | DNQ | 20.3 | 377 | 5.3 | ND | ND | 0.07 | 1.9 | | | Whole
Fish
Sample
#12 | Top Smelt
(Atherinops
affinis) | 4.6 | DNQ | DNQ | DNQ | DNQ | DNQ | 22.4 | 271.7 | 6.2 | ND | ND | 0.06 | 2.1 | | | Whole
Fish
Sample
#13 | Top Smelt
(Atherinops
affinis) | 3.1 | ND | ND | ND | DNQ | ND | 12.8 | 193.7 | DNQ | ND | ND | 0.06 | 1.5 | | | | | Lipids | | | | OC Pe | sticide | s | | | | PCBs | Me | tals | |-----------|--------------------------------|--------------------------------------|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------|------------------|-----------------------| | Date | Tissue Sa | ample Type | Percent
Lipids | Chlordane-
alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | Total
Mercury | Total
Seleniu
m | | | | | % | ng/g μg/g | μg/g | | | Whole
Fish
Sample
#14 | Top Smelt
(Atherinops
affinis) | 2.9 | DNQ | ND | DNQ | DNQ | ND | 43.1 | 890.9 | 0.5 | 101.4 | ND | 0.07 | 1.6 | | | Whole
Fish
Sample
#15 | Top Smelt
(Atherinops
affinis) | 4.9 | DNQ | DNQ | DNQ | 6.4 | ND | 40.5 | 553.1 | 25 | ND | ND | 0.05 | 2 | | | Whole
Fish
Sample
#16 | Top Smelt
(Atherinops
affinis) | 2.9 | DNQ | ND | DNQ | DNQ | ND | 13.3 | 332.2 | DNQ | ND | ND | 0.07 | 1.9 | | 5/14/2015 | Whole
Fish
Sample
#17 | Top Smelt
(Atherinops
affinis) | 3.5 | DNQ | ND | ND | 5 | ND | 19.6 | 278 | 12 | ND | ND | 0.07 | 1.6 | | 3/14/2013 | Whole
Fish
Sample
#18 | Top Smelt
(Atherinops
affinis) | 4. 5 | DNQ | ND | DNQ | DNQ | ND | 24.9 | 562.1 | 23 | 50.3 | ND | 0.06 | 2.1 | | | Whole
Fish
Sample
#19 | Top Smelt
(Atherinops
affinis) | 3.9 | ND | DNQ | DNQ | DNQ | ND | 26.3 | 480.2 | 9 | ND | ND | 0.07 | 1.9 | | | Whole
Fish
Sample
#20 | Top Smelt
(Atherinops
affinis) | 4.9 | 9.5 | 5.1 | DNQ | DNQ | ND | 57 | 753.7 | 57.2 | 570.4 | ND | 0.04 | 4.6 | | | Whole
Fish
Sample
#21 | Top Smelt
(Atherinops
affinis) | 8.7 | 6.4 | DNQ | 7.1 | 6.7 | 33.4 | 42 | 295.7 | 23.6 | 194.8 | ND | 0.07 | 2.3 | | | | Lipids | | | | OC P | esticid | es | | | | PCBs | Me | tals | |-----------|--|-------------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------|------------------|-------------------| | Date | Tissue Sample Ty | /pe Percent Lipids | Chlordane-
alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | Total
Mercury | Total
Selenium | | | | % | ng/g μg/g | μg/g | | | Whole
Fish
Sample
#22 Top Sr
(Atherin | nops 3.9 | ND | ND | DNQ | DNQ | ND | 19.9 | 329.8 | 18.3 | ND | ND | 0.09 | 1.9 | | | Whole Barre
Fish Sandb
Sample (<i>Parala</i>
#23 <i>nebuli</i> | ass
brax
fer) | DNQ | DNQ | 12.8 | 9.7 | 16.7 | 99.6 | 1787.8 | 21.1 | ND | ND | 1 | 1.6 | | | Whole Barre
Fish Sandb
Sample (Parala
#24 nebuli | ass
brax
fer) 8.1 | ND | DNQ | DNQ | DNQ | 12.5 | 29.2 | 1062.3 | 45.3 | 78.21 | ND | 0.1 | 1.9 | | 5/14/2015 | Whole Barre
Fish Sandb
Sample (Parala
#25 nebuli | ass
brax
fer) | ND | DNQ | DNQ | DNQ | 13.2 | 30.8 | 1257.6 | 63.6 | 153.64 | ND | 0.2 | 1.9 | | | Whole Barre
Fish Sandb
Sample (Parala
#26 nebuli | ass
brax
fer) | DNQ | 8.5 | 5.1 | DNQ | 37.5 | 116.6 | 1808.5 | 103.5 | 269.34 | ND | 0.2 | 1.6 | | | Whole Barre
Fish Sandb
Sample (Parala
#27 nebuli | ass
brax
fer) | ND | 8 | 6 | DNQ | 31.4 | 76.5 | 2508.2 | 44.7 | 226.74 | ND | 1.3 | 1.7 | | | Whole Gras Fish Rockf Sample (Sebas #28 rastrelli | ish
stes
ger) | 12 | DNQ | DNQ | 9.4 | 6.7 | 87 | 1925.2 | 96.3 | 337.37 | ND | 0.3 | 2.5 | | | Whole Gras Fish Rockf Sample (Sebas #29 rastrelli | ish
stes 20.5 | 10.4 | DNQ | DNQ | 12.8 | 7.3 | 111 | 2209.3 | 72.8 | 298.54 | ND | 0.2 | 2.2 | | | | | Lipids | | | | OC P | esticid | es | | | | PCBs | Ме | etals | |-----------|--------------------------------|---|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------|------------------|-------------------| | Date | Tissue Sa | ample Type | Percent
Lipids | Chlordane-
alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | Total
Mercury | Total
Selenium | | | | | % | ng/g μg/g | μg/g | | | Whole
Fish
Sample
#30 | Grass
Rockfish
(Sebastes
rastrelliger) | 25.8 | 8.8 | DNQ | DNQ | 22 | 11.1 | 119.7 | 2017.8 | 65 | 322.1 | ND | 0.2 | 1.8 | | 5/14/2015 | Whole
Fish
Sample
#31 | Grass
Rockfish
(Sebastes
rastrelliger) | 18.9 | 15.1 | DNQ | 7.2 | 11.3 | 17.2 | 117.5 | 2374.4 | 108.4 | 309.7 | ND | 0.3 | 2.3 | | | Whole
Fish
Sample
#32 | Grass Rockfish (Sebastes rastrelliger) | 17.7 | 9.9 | DNQ | 5.8 | 18 | 7.4 | 124.9 | 2150.2 | 117.4 | ND | ND | 0.2 | 2 | Only constituents with detected values are included in the table. Units are in wet weight with the exception of 2015 data, which the lab reported in dry weight. # **Freshwater Tissue Data** Table 11. Calleguas Creek – Camarillo Street CSUCI (03_UNIV) Fish Tissue Data Years 1-7 ¹ | | | | Lipids | | | | OC F | esticide | es ² | | | | PCBs ² | |---------|------------------|---|-------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-------------------| | Date | F | ish | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | | | | | % | ng/g | 8/6/08 | | Whole Fish | 4.7 | DNQ | ND | ND | 6.6 | ND | ND | 373 | ND | ND | ND | | 9/3/09 | Arroyo | Comp. #1 | 4.2 | 25 | 11 | 24 | 38 | 97 | 127 | 2422 | 13 | 6397 | 54 | | 9/3/09 | Chub | Comp. #2 | 5.7 | 20 | 13 | 28 | 38 | 102 | 116 | 2782 | 20 | 5675 | 55 | | 9/3/09 | | Comp. #3 | 6 | 32 | 15 | 31 | 45 | 117 | 175 | 2951 | 18
 4300 | 56 | | 9/3/09 | Black | Carcass | 2.5 | 43 | 22 | 22 | 13 | ND | 184 | 6980 | 469 | 6469 | 55 | | 9/3/09 | Bullhead | Fillet w/
Skin | 1.3 | 29 | 13 | 12 | ND | ND | 90 | 3603 | 233 | 3283 | 32 | | 9/3/09 | | Carcass #1 | 4 | 32 | 15 | 25 | 17 | 29 | 100 | 2209 | 240 | 4805 | ND | | 9/3/09 | | Carcass #2 | 4.3 | 37 | 19 | 24 | DNQ | 16 | 112 | 2492 | 328 | 8510 | 21 | | 9/3/09 | | Carcass #3 | 4.7 | 47 | 25 | 26 | 22 | 31 | 119 | 2744 | 466 | ND | ND | | 9/3/09 | Common
Carp | Fillet w/
Skin #1 | 1.5 | 5.5 | ND | DNQ | ND | 10 | 21 | 413 | 46 | ND | ND | | 9/3/09 | · | Fillet w/
Skin #2 | 1.6 | 12 | DNQ | 13 | ND | 21 | 25 | 708 | 115 | ND | ND | | 9/3/09 | | Fillet w/
Skin #3 | 1.9 | 7.5 | DNQ | 18 | ND | 33 | 45 | 772 | 140 | ND | ND | | 9/3/10 | Arroyo | 0-85 mm | 4.3 | DNQ | DNQ | ND | DNQ | DNQ | DNQ | 167 | 16 | ND | ND | | 9/3/10 | Chub | 86-112 mm | 7 | DNQ | DNQ | DNQ | 12 | 30 | 44 | 1300 | 20 | 646 | ND | | 9/3/10 | Comm | on Carp | 4.3 | DNQ | DNQ | DNQ | ND | DNQ | 21 | 247 | 32 | 403 | ND | | 8/25/11 | _ | | 1.9 | DNQ | ND | DNQ | ND | 8.5 | ND | 125 | ND | DNQ | ND | | 8/30/12 | Comm | on Carp | 1.5 | ND | ND | ND | ND | ND | ND | 175 | ND | ND | ND | | 8/27/13 | Fathead
Green | n Composite
d Minnow
Sunfish
on Carp | 3 | ND | ND | ND | ND | ND | ND | 200.5 | ND | ND | ND | | | | | Lipids | | | | OC F | esticide | es ² | | | | PCBs ² | |---------|----------------|----------------------|-------------------|---------------------|---------------------|--------------|--------------|--------------|-----------------|--------------|--------------|-----------|-------------------| | Date | Fi | sh | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | | | | | % | ng/g | | | Whole Fish | 5.1 | 37 | 9.5 | 19.2 | 20.3 | 103.1 | 227.5 | 7093.5 | 26.5 | 623.4 | 505.4 | | 5/14/15 | Common
Carp | Filet w/o
skin #1 | 2.4 | ND | ND | DNQ | DNQ | 6.1 | 15.6 | 901.7 | ND | 128.7 | DNQ | | | | Filet w/o
skin #2 | 1.3 | ND | ND | ND | ND | DNQ | DNQ | 330.6 | ND | 93.19 | ND | ^{1.} Only constituents with detected values are included in the table. ^{2.} Units are in wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 12. Conejo Creek – Adolfo Road (9B_ADOLF) Fish Tissue Data Years 1 – 7 1,2 | | | | Lipids | | | | OC Pe | sticides | s ³ | | | | PCBs ³ | |---------|------------------|----------------------------|-------------------|---------------------|---------------------|--------------|--------------|--------------|----------------|--------------|--------------|-----------|-------------------| | Date | | Fish | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | | | | | % | ng/g | 8/6/08 | Con | nmon Carp | 3.5 | ND | ND | ND | ND | ND | ND | 111 | 54 | ND | ND | | 9/3/09 | Arrovo | Comp. #1 | 8.6 | 19 | 8.2 | 10 | 22 | 54 | 47 | 694 | 14 | 3611 | ND | | 9/3/09 | - Arroyo
chub | Comp. #2 | 9.5 | 18 | 5.2 | 15 | 15 | 40 | 37 | 646 | 21 | 3213 | 56 | | 9/3/09 | | Comp. #3 | 8.4 | 18 | 6.8 | 16 | 21 | 43 | 61 | 629 | ND | 2766 | 67 | | 9/3/09 | | Carcass #1 | 2.5 | 21 | 6.0 | 15 | ND | ND | 27 | 754 | ND | ND | 54 | | 9/3/09 | | Fillet w/ Skin #1 | 0.8 | ND | ND | ND | ND | ND | 10 | 190 | ND | ND | ND | | 9/3/09 | Common | Carcass #2 | 4.8 | 49 | 24 | 18 | ND | ND | 170 | 3643 | 99 | 3566 | 93 | | 9/3/09 | Carp | Fillet w/ Skin #2 | 1.6 | 10 | 5.4 | 8.6 | ND | ND | 43 | 1019 | 30 | ND | 26 | | 9/3/09 | | Carcass Comp.
#3 | 4 | 27 | 15 | 19 | 12 | 131 | 58 | 1019 | 190 | 2544 | 70 | | 9/3/09 | | Fillet Comp. w/
Skin #3 | 1.8 | DNQ | ND | 25 | ND | 57 | 37 | 274 | 86 | ND | ND | | 9/3/10 | Arroyo | 0-85 mm | 4.9 | DNQ | ND | DNQ | DNQ | 11 | 21 | 626 | 17 | 487 | ND | | 9/3/10 | chub | 86-112 mm | 6.6 | DNQ | DNQ | ND | DNQ | DNQ | DNQ | 137 | 14 | ND | ND | | 8/25/11 | Con | nmon carp | 2.4 | DNQ | DNQ | ND | ND | DNQ | ND | 49 | ND | DNQ | ND | | 8/27/13 | Large | mouth Bass | 1.3 | ND | ND | ND | ND | ND | ND | 85.7 | ND | ND | ND | | | | Whole Fish | 13.4 | 31.2 | 13.7 | 15.9 | ND | 20.5 | 35.2 | 678.1 | DNQ | 347.68 | 106.9 | | 5/14/15 | Common
Carp | Filet w/o
skin #1 | 9.8 | 22.9 | 10.9 | 12.4 | 10.2 | 7.4 | 35.2 | 350.5 | 10.6 | 452.86 | 58.5 | | | | Filet w/o
skin #2 | 4.8 | 8 | DNQ | DNQ | DNQ | 5.2 | 12.2 | 635.7 | ND | 185.91 | 99.6 | ^{1.} Only constituents with detected values are included in the table. ^{2.} No fish were caught at this site during year five. ^{3.} Units are wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 13. Arroyo Simi – Hitch Boulevard (07_HITCH) Fish Tissue Data Years 1 – 7 1,2 | | | | | Lipids | | | OC P | esticides | 3 ³ | | | | PCBs ³ | |---------|----------------|--|--------------|-------------------|---------------------|---------------------|--------------|--------------|----------------|--------------|--------------|--------------|-------------------| | Date | | Fish | | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Aroclor
1254 | | | | | | % | ng/g | 8/6/08 | Arroyo
Chub | Composite | | 8.3 | ND | ND | ND | DNQ | ND | ND | 521 | ND | ND | | 9/3/09 | | Composite # | 1 43-60mm | 9.5 | DNQ | ND | 20 | ND | 52 | 233 | 955 | ND | ND | | 9/3/09 | | Composite # | 1 65-90mm | 10.6 | ND | ND | 5.3 | DNQ | 12 | 15.8 | 365 | ND | ND | | 9/3/09 | Arroyo | Composite # | 2 43-60mm | 9.7 | DNQ | ND | 33 | ND | 749 | 437 | 1183 | ND | ND | | 9/3/09 | Chub | Composite # | 2 65-90mm | 10.5 | DNQ | ND | 32 | 14.6 | 74 | 195 | 1648 | 26 | 28 | | 9/3/09 | | Composite # | 3 43-60mm | 8.3 | DNQ | ND | 26 | ND | 45 | 343 | 967 | ND | ND | | 9/3/09 | | Composite # | 3 65-90mm | 11.3 | 6.6 | ND | 27 | ND | 57 | 110 | 1275 | 38 | ND | | 9/3/10 | | Arroyo Chu | b | 7.8 | ND | ND | DNQ | DNQ | 19 | 19.2 | 673 | DNQ | ND | | 8/28/13 | ٧ | /hole Fish Com
Largemouth E
Goldfish | | 11.9 | ND | | | V | hole fish #1 | 14.5 | 20.3 | DNQ | ND | ND | ND | ND | 315.1 | ND | 85.8 | | | | W | hole fish #2 | 11.8 | ND | ND | ND | ND | ND | ND | 254.4 | ND | 22.2 | | 5/14/15 | Largemo | uth Bass W | hole fish #3 | 14.9 | DNQ | ND | ND | ND | 5.1 | 11.8 | 574.1 | 20.6 | 33.7 | | | | W | hole fish #4 | 7.8 | DNQ | ND | ND | ND | ND | ND | 328.9 | ND | 53.1 | | | | W | hole fish #5 | 14.7 | 7.2 | ND | ND | ND | 5.6 | 10.1 | 398.7 | 15.8 | 71.9 | ^{1.} Only constituents with detected values are included in the table. ^{2.} No fish were caught at this site during years 4 or 5. ^{3.} Units are wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 14. Arroyo Las Posas – Somis Road (06_SOMIS) Fish Tissue Data Years 1 – 7 1,2 | | Fish | | | Lipids | OC Pesticides ³ | | | | | | | | | | |--------|----------------|--------------|---------|-------------------|----------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------|--| | Date | | | | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | Toxaphene | Aroclor
1254 | | | | | | | % | ng/g | | 8/6/08 | Arroyo
Chub | Composite | | 2.7 | ND | ND | ND | ND | ND | ND | 492 | ND | ND | | | 9/3/09 | Arroyo
Chub | Composite #1 | 29-51mm | 6.7 | 11 | DNQ | 37 | ND | ND | 646 | 1918 | ND | 34 | | | 9/3/09 | | Composite #1 | 53-97mm | 4.6 | DNQ | ND | 62 | ND | ND | 535 | 1967 | 2821 | 36 | | | 9/3/09 | | Composite #2 | 29-51mm | 6.8 | 9.0 | DNQ | 55 | ND | ND | 1158 | 2203 | ND | 31 | | | 9/3/09 | | Composite #2 | 53-97mm | 6.2 | 12 | 5.9 | 28 | 16 | 43 | 128 | 2313 | 3054 | 44 | | | 9/3/09 | | Composite #3 | 29-51mm | 5.7 | 10 | DNQ | 30 | 11 | 122 | 157 | 2124 | ND | 56 | | | 9/3/09 | | Composite #3 | 53-97mm | 5.3 | 10 | DNQ | 12 | ND | 36 | 258 | 2258 | 2103 | 32 | | ^{1.} Only constituents with detected values are included in the table. ^{2.} No fish were caught at this site during years 3, 4, 5, 6, or 7. ^{3.} Units are wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 15. Revolon Slough – Wood Road (04_WOOD) Fish Tissue Data Years 1 – 7 1,2 | | Fish | | Lipids | OC Pesticides ³ | | | | | | | | | | |---------|--|-----------------------------|-------------------|----------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------------| | Date | | | Percent
Lipids | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | | | | | % | ng/g | 8/7/08 | Common
Carp | Comp.
Fillet, no
skin | 3 | ND | ND | 27 | ND | 14 | 85 | 1194 | 21 | 349 | ND | | 8/7/08 | | Comp.
Fillet w/
skin | 2.1 | 5.3 | ND | 18 | 7.4 | DNQ | 40 | 615 | 13 | 259 | ND | | 9/3/09 | | Carcass | 12.1 | 91 | 62 | 129 | 25 | ND | 1210 | 11100 | 904 | 25800 | 28 | | 9/3/09 | | Fillet w/
Skin #1 | 2.8 | 35 | 21 | 55 | 17 | ND | 262 | 4210 | 328 | 6630 | ND | | 9/3/09 | Camara an | Carcass | 9.6 | 102 | 60 | 205 | 76 | ND | 1070 | 9590 | 367 | 17000 | 51 | | 9/3/09 | Common
Carp | Fillet w/
Skin #2 | 3.3 | 47 | 31 | 110 | 31 | ND | 371 | 4790 | 168 | 5930 | DNQ | | 9/3/09 | | Carcass | 9 | 117 | 66 | 185 | 64 | ND | 1100 | 7750 | 411 | 14300 | 54 | | 9/3/09 | | Fillet w/
Skin #3 | 2.7 | 54 | 33 | 77 | 39 | 50 | 378 | 4000 | 239 | 5480 | 20 | | 9/3/09 | | Comp.
#1 | 8.7 | 41 | 27 | 133 | 77 | 191 | 878 | 6320 | 57 | 14700 | 24 | |
9/3/09 | Arroyo
Chub | Comp.
#1 | 9 | 38 | 24 | 82 | 73 | 222 | 689 | 5630 | 36 | 19900 | DNQ | | 9/3/09 | | Comp.
#2 | 6.9 | 33 | 16 | 88 | 65 | 168 | 568 | 5580 | 52 | 17900 | ND | | 8/25/11 | Common carp | | 2.6 | 9.3 | 5.5 | 15 | DNQ | 67 | ND | 819 | 8.5 | 206 | ND | | 9/4/12 | Common carp | | 5.6 | ND | ND | ND | ND | 116 | ND | 1750 | ND | ND | ND | | 8/27/13 | Whole Fish
Composite
Common carp
Fathead Minnow | | 6.3 | ND | ND | ND | ND | ND | 84.3 | 1984.1 | ND | 1611.1 | ND | | | | | Lipids | OC Pesticides ³ | | | | | | | | PCBs ³ | | |---------|-------------------|-----------------------|--------|----------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|-----------------| | Date | Fis | Fish | | Chlordane
-alpha | Chlordane
-gamma | 2,4'-
DDD | 2,4'-
DDE | 2,4'-
DDT | 4,4'-
DDD | 4,4'-
DDE | 4,4'-
DDT | Toxaphene | Aroclor
1254 | | | | | % | ng/g | | | Whole
Fish #1 | 13.6 | 50.1 | 24.2 | 76.2 | 35.1 | 61.4 | 277.1 | 4474.4 | 294.5 | 3534.4 | 57.4 | | | | Whole
Fish #2 | 15.6 | 136.5 | 66.7 | 139.3 | 40.9 | 91.4 | 608 | 10502.1 | 560.4 | 4699.7 | 119.1 | | | Common Fillet w/o | Whole
Fish #3 | 16.9 | 89.9 | 42.4 | 57.7 | ND | 67.4 | 534.5 | 8634.2 | 316.4 | 4147.6 | 72.7 | | | | Fillet w/o
skin #1 | 11.5 | 60.6 | 31 | 74.6 | 26.3 | 41.4 | 171.8 | 3492.5 | 217.5 | 3116.8 | 20.4 | | 5/14/15 | | Filet w/o
skin #2 | 3.2 | DNQ | DNQ | 7.5 | ND | 13.7 | 37.3 | 632.7 | 41 | 728.3 | ND | | 3/14/13 | | Filet w/o
skin #3 | 3.1 | DNQ | DNQ | DNQ | ND | 12.7 | 28.3 | 669.7 | 36.9 | 472.1 | ND | | | | Filet w/o
skin #4 | 2.6 | DNQ | DNQ | 9.4 | 6.6 | 14 | 29.4 | 724.4 | 18.5 | 472.9 | ND | | | | Whole
Fish | 12.4 | 56 | 26.8 | 45.1 | ND | 80.5 | 270 | 3880.8 | 360.8 | 4567.3 | 42.9 | | | Bullhead | Filet w/o
skin #1 | 2.8 | ND | ND | ND | ND | 18.3 | 39.8 | 810.7 | 40.8 | 736.6 | ND | | | | Filet w/o
skin #2 | 6.2 | ND | ND | ND | ND | 22.5 | 40.5 | 749.4 | 30.5 | 635.9 | ND | ^{1.} Only constituents with detected values are included in the table. ^{2.} No fish were caught at this site during year 3. ^{3.} Units are wet weight with the exception of 2015 data, which the lab reported in dry weight. Table 16. Revolon Slough – Wood Road (04 $_$ WOOD) Metals Fish Tissue Data Years 1 – 7 $^{1,\,2}$ | | | | Lipids | Me | tals ³ | |---------|-------------|---------------------------------------|-------------------|------------------|-------------------| | Date | | Fish | Percent
Lipids | Total
Mercury | Total
Selenium | | | | | % | μ g/g | μg/g | | 8/7/08 | Common Carp | Comp. Fillet, no skin | 3 | DNQ | 1.3 | | 8/7/08 | | Comp. Fillet w/ skin | 2.1 | DNQ | 2.3 | | 9/3/09 | | Carcass #1 | 12.1 | DNQ | 1.5 | | 9/3/09 | | Fillet w/ Skin #1 | 2.8 | DNQ | 1.6 | | 9/3/09 | | Carcass #2 | 9.6 | DNQ | 1.9 | | 9/3/09 | Common Carp | Fillet w/ Skin #2 | 3.3 | DNQ | 2.1 | | 9/3/09 | | Carcass #3 | 9 | DNQ | 1.4 | | 9/3/09 | | Fillet w/ Skin #3 | 2.7 | 0.02 | 1.7 | | 9/3/09 | | Comp. #1 | 8.7 | 0.02 | 1.6 | | 9/3/09 | Arroyo Chub | Comp. #1 | 9 | 0.02 | 1.8 | | 9/3/09 | | Comp. #2 | 6.9 | 0.02 | 1.4 | | 8/25/11 | Com | mon carp | 2.6 | 0.004 | 2.7 | | 9/4/12 | Com | mon carp | 5.6 | 0.011 | 1.9 | | 8/27/13 | Com | sh Composite
mon carp
ad Minnow | 6.3 | 0.01 | 1.9 | | | | | Lipids | Me | tals ³ | |---------|-------------|--------------------|-------------------|------------------|-------------------| | Date | Fi | sh | Percent
Lipids | Total
Mercury | Total
Selenium | | | | | % | μ g/g | μ g/g | | | | Whole Fish #1 | 13.6 | 0.1 | 6.5 | | | | Whole Fish #2 | 15.6 | 0.1 | 5.3 | | | | Whole Fish #3 | 16.9 | 0.1 | 4.8 | | | Common Carp | Fillet w/o skin #1 | 11.5 | 0.1 | 4.8 | | 5/14/15 | | Filet w/o skin #2 | 3.2 | 0.1 | 5.3 | | 5/14/15 | | Filet w/o skin #3 | 3.1 | 0.1 | 5.9 | | | | Filet w/o skin #4 | 2.6 | 0.1 | 5.5 | | | | Whole Fish | 12.4 | 0.1 | 7.9 | | | Bullhead | Filet w/o skin #1 | 2.8 | 0.1 | 5.9 | | | | Filet w/o skin #2 | 6.2 | 0.2 | 5.1 | ^{1.} Only constituents with detected values are included in the table. No fish were caught at this site during year 3. Units are wet weight with the exception of 2015 data, which the lab reported in dry weight. #### **TOXICITY DATA** The following is a summary of the toxicity results to date for water column and sediment at the freshwater and estuarine sampling sites. Table 17 displays significant water column mortality test results for seven years of CCWTMP events, including both dry and storm (bolded text) events. Significant mortality found in freshwater sediments is shown in Table 18 and significant mortality at the estuarine sites is shown in Table 19. Toxicity was frequently identified at the 04_WOOD site during the first two monitoring years in water column samples and in each of the four sediment samples. The Stakeholders have chosen to invest resources into source control efforts to address sources potentially contributing to the toxicity issue. This is being accomplished through the implementation of the Agricultural Water Quality Management Plan (AWQMP) developed by the Ventura County Agricultural Irrigated Lands Group (VCAILG) as part of the Conditional Waiver for Irrigated Agricultural Lands (Ag Waiver). During dry weather water column sampling, toxicity has been identified historically at all sampled sites except 13_BELT. There were three occurrences of dry weather water column toxicity during the seventh year of monitoring. Toxicity has been identified during wet weather monitoring at all sites, except for 10_GATE and 13_BELT. Wet weather toxicity occurred during both storm events for this year of monitoring (Event 46 and Event 47). Water column TIEs have been initiated as described previously, and outcomes of these efforts have had limited success in identifying the true cause of toxicity. While not identifying the specific constituents causing toxicity, the TIEs have identified: - Organic compounds are likely contributors to ambient water toxicity. - Compounds similar to organophosphorus (OP) pesticides are continually being identified as possible contributors to the observed toxicity. The results of future CCWTMP toxicity testing will continue to assist in the identification of when and where conditions are toxic in the Calleguas Creek watershed, and help the stakeholders better target areas in the watershed that show continual toxicity and focus limited resources to address the problems. The majority of the freshwater toxicity occurrences during year seven were at the 04_WOOD site (five of the eight occurrences). The others were during wet Event 46 at the 03_UNIV, 06_SOMIS, and 07_HITCH sites. In year seven, fresh water sediment toxicity testing was performed during Event 44 for 04_WOOD, 02_PCH, 03_UNIV, and 9A_HOWAR. Statistically significant acute toxicity was observed for *Hyalella azteca* at 04_WOOD and 03_UNIV, but no toxicity was observed for the remaining sites. Follow-up toxicity investigation was not conducted at the 04_WOOD and 03_UNIV sites as TIEs are not performed at 04_WOOD due to the reason stated above and there was less than a 20 percent reduction in survival for the 03_UNIV site compared to the sample control. Mugu Lagoon sediment toxicity testing was also conducted during Event 44 at the 01_BPT_03, 01_BPT_06, 01_BPT_14, 01_BPT_15, and 01_BPT_74 sites. No survival toxicity was observed for *Eohaustorius estuaries* during year seven lagoon sediment toxicity testing. Table 17. Water Column Toxicity for All Monitoring Events and Sites (Significant mortality denoted by "X", bolded events are wet weather events) | CCWMTP | | | <u> </u> | | Site ID | | · | | |----------|-------|----------------|----------|-----------------|---------|-----------------|---------|-----------------| | Year | Event | 04_WOOD | 9B_ADOLF | 03_UNIV | 10_GATE | 06_SOMIS | 13_BELT | 07_HITCH | | | 1 | Х | | | | | | | | | 2 | Х | | | | | | | | Voor 1 | 3 | Х | x | Χ | | | | X | | rear i | 4 | Х | | | | | | | | | 5 | Х | | | | | | X | | | 6 | | | | | | | | | | 9 | | | | | | | | | | 12 | Х | | | | | | | | V0 | 14 | Х | | X | | x | | | | rear 2 | 16 | Х | | X | | | | X | | | 17 | | | | | | | | | ССШМТР | 20 | | | Χ | | | | | | | 22 | | | | | | | | | | 23 | | | | | | | | | V2 | 24 | Х | | | | | | | | Year 3 | 25 | | | | | | | | | | 26 | Х | | | | | | Х | | | 27 | | | | | | | | | | 28 | | | | | Х | | | | | 29 | | X | | X | | | | | V4 | 30 | Х | | | | | | | | Year 4 | 31 | | | | | | | | | | 32 | | | X | | | | | | | 33 | | | | | | | | | | 34 | | | | | | | | | | 35 | | | | | | | | | Year 5 1 | 36 | X ² | | | | | | | | | 37 | | | X ³ | | | | | | | 38 | | | | | | | | | | 39 | X ² | | | | | | | | | 40 | | | | 4 | | | | | Year 6 | 41 | | 6 | 6 | 6 | 6 | 5 | 6 | | | 42 | | | | | | | | | | 43 | | | | | | | | | | 44 | X ² | | 7 | | 8 | | | | | 45 | X ² | | | | | 9 | | | | 46 | X ² | | X ¹⁰ | | X ¹¹ | | X ¹⁰ | | Year 7 | 47 | X ² | | | | | | | | | 48 | | | | | | | | | | 49 | X ² | | | | 12 | 12 | | ¹⁰_GATE and 13_BELT are also toxicity investigation monitoring sites. During year 5 these sites were only sampled during event 38. A TIE was not initiated at this site. TIEs conducted during previous monitoring years identified organic compounds such as pesticides as the likely cause of the toxicity. TIEs have been suspended while efforts are taken to reduce the source of the toxicity. - 3. A Phase I TIE was conducted for this site. While the TIE did not conclusively identify a source of toxicity, the results were indicative of organic compounds. The corresponding water quality sample detected the OP pesticide chlorpyrifos at a concentration of 0.083 µg/L. This level is above the wasteload allocation for stormwater discharges but below the agricultural discharger's interim load allocation and above the final numeric target. - 4. Toxicity testing was not performed at the 10_GATE site
for Event 40. - 5. Toxicity testing was not performed at the 10_BELT site for Event 41. - Successful toxicity testing for sites with conductivity less than 3000 μS/cm could not be completed for Event 41 due to a decline in the C. dubia laboratory culture. Sites include: 9B_ADOLF, 03_UNIV, 10_GATE, 06_SOMIS, and 07_HITCH. - 7. An initial and a follow-up Phase I TIE was conducted for this site. Though the acute and chronic results of the toxicity test was not significantly different than that of the laboratory, the testing of this site did result in a greater than 50% mortality, triggering the initial and follow-up Phase I TIE. The initial TIE did not conclusively determine the source of toxicity, but did suggest that multiple co-occurring contaminants may have been responsible for the toxicity. The follow-up TIE demonstrated that no additional reductions in survival or reproduction occurred after the initial Baseline treatment, suggesting that the toxicity observed in the initial test was not persistent. This result suggests that the toxicant may have undergone natural degradation processes as the sample water aged. - 8. Toxicity testing was not performed at the 06_SOMIS site for Event 44. - 9. Toxicity testing was not performed at the 13_BELT site for Event 45. - 10. A Phase I TIE was initiated at this site. While the TIE did not conclusively identify a source of toxicity, the results suggest that compounds that are activated by the Cytochrome-P450 system (e.g. OP pesticides) are contributing to sample toxicity. - 11. A Phase I TIE was initiated at this site. While the TIE did not conclusively identify a source of toxicity, the results suggest that non-polar organic compound(s) are contributing to the ambient toxicity. - 12. Toxicity testing was not performed at the 06_SOMIS or 13_BELT sites for Event 49. Table 18. Sediment Toxicity for All CCWTMP Freshwater Monitoring Events and Sites (Significant mortality denoted by "X") | CCWMTP | F1 | Site ID | | | | | | | | |--------|-------|---------|----------|----------------|-----------------------|--|--|--|--| | Year | Event | 04_WOOD | 02_PCH 1 | 03_UNIV | 9A_HOWAR ¹ | | | | | | Year 1 | 1 | Х | | | | | | | | | Year 2 | 9 | X | | | | | | | | | Year 3 | 22 | X | | | | | | | | | Year 4 | 28 | X | Χ | Χ | | | | | | | Year 5 | 34 | X | | Χ | | | | | | | Year 6 | 39 | X | | X ² | | | | | | | Year 7 | 44 | X | | Χ | | | | | | - 1. 02_PCH and 9A_HOWAR are toxicity investigation monitoring sites. - 2. A TIE targeted for organics was performed for the 03_UNIV site due to a greater than 50 percent reduction in *H. azteca* survival. Table 19. Sediment Toxicity for Mugu Lagoon Monitoring Events and Sites (Significant mortality denoted by "X") | CCWMTP | Event | Site ID | | | | | | | | | |--------|-------|----------|----------|-----------|----------------|-----------|--|--|--|--| | Year | | 01_BPT_3 | 01_BPT_6 | 01_BPT_14 | 01_BPT_15 | 01_BPT_14 | | | | | | Year 1 | 1 | | X 1 | X 1 | X ¹ | X 1 | | | | | | Year 4 | 28 | | | | | | | | | | | Year 7 | 44 | | | | | | | | | | 1. Survival toxicity for Eohaustorius estuaries, but not for Mytilus galloprovinciales. ## Compliance Comparison and Discussion As outlined in the QAPP, data applicable to compliance targets or allocations were reviewed for this report. The collected data were compared to the applicable compliance targets or allocations and it is this comparison that the various agencies will use to determine necessary actions in accordance with their permit. For the compliance comparison, various procedures were used depending on whether or not the final compliance dates for the TMDL were applicable during the monitoring year. For TMDLs where final allocations or targets are not currently effective (OC Pesticides, Metals, and Salts TMDLs), the following compliance comparisons were conducted: - 1. Applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the interim load allocations and waste load allocations. - 2. If an exceedance of an interim load allocation and/or waste load allocation was observed, the contributing land use data were reviewed to evaluate the potential cause of the exceedance. - 3. POTW effluent data were compared to the relevant interim waste load allocations. For the Nitrogen TMDL the following compliance comparisons were conducted: - 1. For POTWs, the final waste load allocations are currently effective. As a result, effluent monitoring results were compared to the final allocations for the analysis. - 2. For agricultural dischargers and other non-point sources, final load allocations are currently effective. Since agricultural dischargers are the only entities with allocations other than POTWs, compliance is evaluated by comparing receiving water results against TMDL numeric targets. For the Toxicity TMDL, the following compliance comparisons were conducted: - 1. For POTWs, the final waste load allocations are currently effective. As a result, effluent monitoring results were compared to the final allocations for the comparison. - 2. For MS4 dischargers, the final waste load allocations are currently effective. As a result, applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the final waste load allocations. If an exceedance of the final waste load allocation was found, the contributing urban land use data were reviewed to evaluate whether the MS4 was potentially causing the exceedance. - 3. For agricultural dischargers, the final load allocations are not yet effective. As a result, applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the interim load allocations. If an exceedance of an interim load allocation was observed, the contributing agricultural land use data were reviewed to evaluate whether agricultural discharges were potentially causing the exceedance. - 4. In cases where the applicable interim load allocations or final waste load allocations have different values for acute (1-hour) toxicity and chronic (4-day) toxicity, the acute toxicity allocations were used for comparing wet weather data and the chronic toxicity allocations were used for comparing dry-weather data. The following tables compare the applicable allocations based on the compliance procedure outlined above for each of the TMDLs. Some constituents sampled under the CCWTMP do not have applicable allocations and/or targets and are not included in the compliance comparison. #### **COMPLIANCE AT RECEIVING WATER SITES** Table 20. OC Pesticides, PCBs, & Siltation in Sediment | Site & Constituent | Units | Interim WLA & LA 1 | Event 44 | |------------------------------|----------------|----------------------|----------| | | | | Aug-2014 | | Mugu Lagoon – Easte | rn Arm (01_Bl | PT_3) | | | Total Chlordane 2 | ng/g dw | 25 | ND | | 4,4'-DDD | ng/g dw | 69 | DNQ | | 4,4'-DDE | ng/g dw | 300 | 5.7 | | 4,4'-DDT | ng/g dw | 39 | ND | | Dieldrin | ng/g dw | 19 | ND | | PCBs ³ | ng/g dw | 180 | ND | | Toxaphene | ng/g dw | 22900 | ND | | Mugu Lagoon – Easte | rn Part of Wes | stern Arm (01_BPT_6) | | | Total Chlordane 2 | ng/g dw | 25 | ND | | 4,4'-DDD | ng/g dw | 69 | DNQ | | 4,4'-DDE | ng/g dw | 300 | 10.7 | | 4,4'-DDT | ng/g dw | 39 | ND | | Dieldrin | ng/g dw | 19 | ND | | PCBs ³ | ng/g dw | 180 | ND | | Toxaphene | ng/g dw | 22900 | ND | | Mugu Lagoon – Centr | al Part of Wes | tern Arm (01_BPT_14) | | | Fotal Chlordane ² | ng/g dw | 25 | ND | | 4,4'-DDD | ng/g dw | 69 | DNQ | | 4,4'-DDE | ng/g dw | 300 | 23.9 | | 4,4'-DDT | ng/g dw | 39 | ND | | Dieldrin | ng/g dw | 19 | ND | | PCBs ³ | ng/g dw | 180 | DNQ | | Гохарhene | ng/g dw | 22900 | ND | | Mugu Lagoon – Centr | al Lagoon (01 | _BPT_15) | | | Total Chlordane 2 | ng/g dw | 25 | ND | | 4,4'-DDD | ng/g dw | 69 | DNQ | | 4,4'-DDE | ng/g dw | 300 | 11.8 | | 4,4'-DDT | ng/g dw | 39 | ND | | Dieldrin | ng/g dw | 19 | ND | | PCBs ³ | ng/g dw | 180 | ND | | Toxaphene | ng/g dw | 22900 | ND | | Site & Constituent | Units | Interim WLA & LA ¹ | Event 44
Aug-2014 | |------------------------------|----------------|-------------------------------|----------------------| | Mugu Lagoon – Centr | al Lagoon, So | uth of Drain #7 (01_SG_74 | !) | | Total Chlordane ² | ng/g dw | 25 | ND | | 4,4'-DDD | ng/g dw | 69 | DNQ | | 4,4'-DDE | ng/g dw | 300 | 8.7 | | 4,4'-DDT | ng/g dw | 39 | ND | | Dieldrin | ng/g dw | 19 | ND | | PCBs ³ | ng/g dw | 180 | DNQ | | Toxaphene | ng/g dw | 22900 | ND | | Calleguas Creek – Hw | y 1 Bridge (02 | P_PCH) | | | Total Chlordane 2 | ng/g dw | 17 | ND | | 4,4'-DDD | ng/g dw | 66 | ND | | 4,4'-DDE | ng/g dw | 470 | DNQ | | 4,4'-DDT | ng/g dw | 110 | DNQ | | Dieldrin | ng/g dw | 3 | ND | | PCBs ³ | ng/g dw | 3800 | ND | | Toxaphene | ng/g dw | 260 | ND | | Revolon Slough – Wo | od Road (04_ l | NOOD) | | | Total Chlordane 2 | ng/g dw | 48 | ND | | 4,4'-DDD | ng/g dw | 400 | DNQ | | 4,4'-DDE | ng/g dw | 1600 | ND | | 4,4'-DDT | ng/g dw | 690 | 7.0 | | Dieldrin | ng/g dw | 5.7 | ND | | PCBs ³ | ng/g dw | 7600 | ND | | Toxaphene | ng/g dw | 790 | ND | | Calleguas Creek – Ca | marillo Street | CSUCI (03_UNIV) | | | Total Chlordane ² | ng/g dw | 17 | ND | | 4,4'-DDD | ng/g dw | 66 | ND | | 4,4'-DDE | ng/g dw | 470 | DNQ | | 4,4'-DDT | ng/g dw | 110 | ND | | Dieldrin | ng/g dw | 3 | ND | | PCBs ³ | ng/g dw | 3800 | ND | | Toxaphene | ng/g dw | 260 | ND | | Site & Constituent | Units | Interim WLA & LA ¹ | Event 44
Aug-2014 | |------------------------------|------------------|-------------------------------|----------------------| | Conejo Creek – Adolfe | o Road (9B_AD | OOLF) | | | Total Chlordane ² | ng/g dw | 3.4 | DNQ | | 4,4'-DDD | 1,4'-DDD ng/g dw | | ND | | 4,4'-DDE | ng/g dw | 20 | 19.0 | | 4,4'-DDT | ng/g dw | 2 | 29.3 | | Dieldrin | ng/g dw | 3 | ND | | PCBs ³ | ng/g dw | 3800 | ND | | Toxaphene | ng/g dw | 260 | ND | | Arroyo Las Posas – S | omis Road (06 | _SOMIS) | | | Total Chlordane ² | ng/g dw | 3.3 | ND
 | 4,4'-DDD | ng/g dw | 290 | ND | | 4,4'-DDE | ng/g dw | 950 | 5.1 | | 4,4'-DDT | ng/g dw | 670 | DNQ | | Dieldrin | ng/g dw | 1.1 | ND | | PCBs ³ | ng/g dw | 25,700 | ND | | Toxaphene | ng/g dw | 230 | ND | | Arroyo Simi – Hitch B | oulevard (07_F | HITCH) | | | Total Chlordane ² | ng/g dw | 3.3 | ND | | 4,4'-DDD | ng/g dw | 14 | ND | | 4,4'-DDE | ng/g dw | 170 | ND | | 4,4'-DDT | ng/g dw | 25 | ND | | Dieldrin | ng/g dw | 1.1 | ND | | PCBs ³ | ng/g dw | 25,700 | ND | | Toxaphene | ng/g dw | 230 | ND | ND=not detected; DNQ=detected not quantifiable Interim waste load allocation for stormwater permittees and interim load allocations for agricultural dischargers; effective until March 24, 2026 (R4-2005-010). ^{2.} Total chlordane is the sum of alpha and gamma-chlordane. ^{3.} PCBs concentrations are the sum of the seven aroclors identified in CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260). Table 21. Nitrogen Compounds in Water | Site &
Constituent | Units | Target ¹ | Event
44
Dry
Aug-14 | Event
45
Dry
Nov-14 | Event
46
Wet
Dec-14 | Event
47
Wet
Dec-14 | Event
48
Dry
Feb-15 | Event
49
Dry
May-15 | |--------------------------|----------|---------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | Mugu Lagoon - F | Ronald R | eagan Brid | | | | | . 0.0 .0 | inay is | | Ammonia as N | mg/L | 8.1 | 0.19 | 0.7 | 0.54 | 0.91 | ND | 0.12 | | Nitrate as N | mg/L | 10 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | | Nitrite as N | mg/L | 1 | 0.17 | 0.11 | 0.01 | 0.01 | 0.01 | 0.14 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 8.52 | 26.76 | 28.51 | 5.25 | 0.05 | 13.25 | | Calleguas Creek | – Hwy 1 | Bridge (02 | 2_PCH) | | | | | | | Ammonia as N | mg/L | 5.5 | ND | 0.21 | NR | NR | ND | 0.14 | | Nitrate as N | mg/L | 10 | 25.02 | 19.87 | NR | NR | 17.36 | 16.23 | | Nitrite as N | mg/L | 1 | 0.01 | 0.01 | NR | NR | 0.01 | 0.01 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 25.03 | 19.88 | NR | NR | 17.37 | 16.24 | | Calleguas Creek | – Camai | rillo Street | CSUCI (03 | _UNIV) | | | | | | Ammonia as N | mg/L | 8.4 | 0.06 | 0.09 | 0.33 | 0.55 | 0.13 | 0.08 | | Nitrate as N | mg/L | 10 | 6.82 | 7.31 | 3.1 | 1.92 | 6.4 | 6.84 | | Nitrite as N | mg/L | 1 | 0.01 | 0.13 | ND | ND | 0.07 | 0.01 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 6.83 | 7.44 | 3.1 | 1.9 | 6.47 | 6.85 | | Revolon Slough | – Wood | Road (04_ | WOOD) | | | | | | | Ammonia as N | mg/L | 5.7 | 0.12 | 0.22 | 0.37 | 0.3 | 80.0 | 0.12 | | Nitrate as N | mg/L | 10 | 46.9 | 47.33 | 5.56 | 3.71 | 42.65 | 44.6 | | Nitrite as N | mg/L | 1 | 0.61 | 0.28 | ND | 0.03 | 0.34 | 0.44 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 47.51 | 47.61 | 5.56 | 3.74 | 42.99 | 45.04 | | Beardsley Wash | – Centra | al Avenue (| 05_CENT | ₹) | | | | | | Ammonia as N | mg/L | 5.7 | ND | 0.11 | 0.47 | 0.6 | ND | ND | | Nitrate as N | mg/L | 10 | 32.4 | 8.68 | 8.89 | 4.68 | 11.08 | 29.9 | | Nitrite as N | mg/L | 1 | 0.29 | 0.05 | ND | 0.03 | 0.1 | 0.25 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 32.69 | 8.73 | 8.89 | 4.71 | 11.18 | 30.15 | | Arroyo Las Posa | s – Som | is Road (0 | 6_SOMIS) | | | | | | | Ammonia as N | mg/L | 8.1 | | 0.07 | 0.44 | 0.51 | ND | NS | | Nitrate as N | mg/L | 10 | | 12.72 | 9.49 | 1.38 | 10.1 | NS | | Nitrite as N | mg/L | 1 | | 0.03 | 0.04 | 0.01 | 0.04 | NS | | Nitrate-N +
Nitrite-N | mg/L | 10 | | 12.75 | 9.53 | 1.39 | 10.14 | NS | | Site &
Constituent | Units | Target ¹ | Event
44
Dry
Aug-14 | Event
45
Dry
Nov-14 | Event
46
Wet
Dec-14 | Event
47
Wet
Dec-14 | Event
48
Dry
Feb-15 | Event
49
Dry
May-15 | |--------------------------|-----------|---------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | Arroyo Simi – H | itch Boul | evard (07_ | | | | | | | | Ammonia as N | mg/L | 4.7 | 0.23 | 0.04 | 0.4 | 0.46 | ND | 0.04 | | Nitrate as N | mg/L | 10 | 10.09 | 9.86 | 3.67 | 1.29 | 10.77 | 9.92 | | Nitrite as N | mg/L | 1 | 0.07 | 0.03 | ND | 0.01 | 0.04 | 0.05 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 10.16 | 9.89 | 3.67 | 1.3 | 10.81 | 9.97 | | Arroyo Simi – M | adera Av | enue (07_l | MADER) | | | | | | | Ammonia as N | mg/L | 4.7 | ND | 0.2 | 0.58 | 0.34 | 0.05 | 0.05 | | Nitrate as N | mg/L | 10 | 4.1 | 4.79 | 0.93 | 1.32 | 3.44 | 5.15 | | Nitrite as N | mg/L | 1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.05 | 0.11 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 4.11 | 4.84 | 0.96 | 1.33 | 3.49 | 5.26 | | Conejo Creek – | Howard I | Road Bridg | je (9A_HO | WAR) | | | | | | Ammonia as N | mg/L | 9.5 | 0.83 | 1.28 | NR | NR | 0.44 | 0.38 | | Nitrate as N | mg/L | 10 | 7.73 | 8.31 | NR | NR | 6.25 | 6.54 | | Nitrite as N | mg/L | 1 | 80.0 | 0.1 | NR | NR | 0.04 | 0.06 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 7.81 | 8.41 | NR | NR | 6.29 | 6.6 | | Conejo Creek – | Adolfo R | oad (9B_A | DOLF) | | | | | | | Ammonia as N | mg/L | 9.5 | 0.04 | 0.16 | 0.37 | 0.41 | 0.03 | 0.04 | | Nitrate as N | mg/L | 10 | 5.63 | 6.29 | 1.14 | 1.71 | 5.56 | 5.76 | | Nitrite as N | mg/L | 1 | 0.01 | ND | 0.01 | 0.01 | 0.01 | 0.01 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 5.64 | 6.29 | 1.15 | 1.72 | 5.57 | 5.77 | | Conejo Creek – | Hill Cany | on Below l | N Fork (10_ | _GATE) | | | | | | Ammonia as N | mg/L | 8.4 | 0.22 | 0.65 | 0.42 | 0.28 | 0.56 | 0.41 | | Nitrate as N | mg/L | 10 | 5.69 | 5.75 | 0.86 | 1.68 | 4.94 | 5.24 | | Nitrite as N | mg/L | 1 | 0.17 | 0.19 | ND | 0.01 | 0.12 | 0.1 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 5.86 | 5.94 | 0.86 | 1.69 | 5.06 | 5.34 | | Conejo Creek – | North Fo | rk Above F | Hill Canyon | (12_PARK | () | | | | | Ammonia as N | mg/L | 3.2 | ND | 0.03 | NR | NR | ND | ND | | Nitrate as N | mg/L | 10 | ND | 0.39 | NR | NR | 0.36 | 0.06 | | Nitrite as N | mg/L | 1 | 0.01 | 0.01 | NR | NR | 0.03 | 0.01 | | Nitrate-N +
Nitrite-N | mg/L | 10 | 0.01 | 0.4 | NR | NR | 0.39 | 0.07 | | Site &
Constituent | Units | Target ¹ | Event
44
Dry
Aug-14 | Event
45
Dry
Nov-14 | Event
46
Wet
Dec-14 | Event
47
Wet
Dec-14 | Event
48
Dry
Feb-15 | Event
49
Dry
May-15 | | | |--------------------------|---|---------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--| | Conejo Creek – | Conejo Creek – S Fork Behind Belt Press Build (13_BELT) | | | | | | | | | | | Ammonia as N | mg/L | 5.1 | ND | 0.1 | NR | NR | ND | ND | | | | Nitrate as N | mg/L | 10 | 0.31 | 0.95 | NR | NR | 0.61 | 0.28 | | | | Nitrite as N | mg/L | 1 | 0.01 | 0.01 | NR | NR | 0.01 | 0.01 | | | | Nitrate-N +
Nitrite-N | mg/L | 10 | 0.32 | 0.96 | NR | NR | 0.62 | 0.29 | | | Results in **bold red type** exceed numeric TMDL target. NS=no sample, dry; NR=not required; ND=not detected; DNQ=detected not quantifiable; J=estimated DNQ values for Nitrite-N, shown for the purpose of calculating the Nitrite-N + Nitrate-N sum and comparing it against the Nitrate-N + Nitrite-N target. 1. Load allocations for Nitrate-N + Nitrite-N are in effect for agricultural and other non-point sources. To evaluate compliance, monitoring results at receiving water compliance sites were compared against TMDL numeric targets (R4-2008-009). One-hour average. Table 22. Toxicity, Diazinon, and Chlorpyrifos in Water | Diazinon Ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.004 | Site &
Constituent | Units | Dry
WLA ¹ | Dry
Interim
LA ² | Event 44
Dry
Aug-14 | Event 45
Dry
Nov-14 | Event 48
Dry
Feb-15 | Event 49
Dry
May-15 | Wet
WLA ¹ | Wet
Interim
LA ² | Event 46
Wet
Dec-14 | Event 47
Wet
Dec-14 |
---|-----------------------|--------------|-------------------------|-----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------|-----------------------------------|---------------------------|---------------------------| | Diazinon Ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.004 | Mugu Lagoon – | Ronald Rea | gan Bride | ge (01_RR_ | BR) | | | | | | | | | Calleguas Creek - Camarillo Street CSUCI (03_UNIV) | Chlorpyrifos | ug/L | 0.014 | 0.81 | 0.0017 | 0.028 | ND | ND | 0.014 | 2.57 | 0.719 | 0.381 | | Chlorpyrifos ug/L 0.014 0.81 ND ND ND ND ND 0.11 0.278 0.006 0.005 0.014 2.57 0.348 0.006 0.007 0.0078 0.0078 0.014 0.278 0.019 0.0078 | Diazinon | ug/L | 0.1 | 0.138 | ND | ND | ND | ND | 0.1 | 0.278 | 0.004 | ND | | Diazinon Ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.006 | Calleguas Creek | – Camarille | o Street C | SUCI (03_U | INIV) | | | | | | | | | Revolon Slough - Wood Road (04_WOOD) | Chlorpyrifos | ug/L | 0.014 | 0.81 | ND | 0.114 | 0.004 | 0.005 | 0.014 | 2.57 | 0.348 | 0.152 | | Chlorpyrifos ug/L 0.014 0.81 0.0050 0.084 0.006 0.003 0.014 2.57 3.082 0 Diazinon ug/L 0.1 0.138 ND 0.163 ND ND 0.014 2.57 0.019 0.01 Arroyo Las Posas – Somis Road (06_SOMIS) Chlorpyrifos ug/L 0.014 0.81 NS 0.009 0.003 NS 0.014 2.57 0.263 0 Diazinon ug/L 0.1 0.138 NS ND ND NS 0.1 0.278 ND Arroyo Simi – Hitch Boulevard (07_HITCH) Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.014 2.57 0.022 0 Chlorpyrifos ug/L 0.014 0.81 ND < | Diazinon | ug/L | 0.1 | 0.138 | ND | ND | ND | ND | 0.1 | 0.278 | 0.006 | ND | | Diazinon Ug/L 0.1 0.138 ND 0.163 ND ND 0.1 0.278 0.019 0.278 | Revolon Slough | – Wood Ro | ad (04_W | OOD) | | | | | | | | | | Arroyo Las Posas – Somis Road (06_SOMIS) Chlorpyrifos ug/L 0.014 0.81 NS 0.009 0.003 NS 0.014 2.57 0.263 0 Diazinon ug/L 0.1 0.138 NS ND ND NS 0.1 0.278 ND Arroyo Simi – Hitch Boulevard (07_HITCH) Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 ND Conejo Creek – Adolfo Road (9B_ADOLF) Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.003 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.027 0 Chlorpyrifos ug/L 0.014 0.81 | Chlorpyrifos | ug/L | 0.014 | 0.81 | 0.0050 | 0.084 | 0.006 | 0.003 | 0.014 | 2.57 | 3.082 | 0.593 | | Chlorpyrifos ug/L 0.014 0.81 NS 0.009 0.003 NS 0.014 2.57 0.263 0 Diazinon ug/L 0.1 0.138 NS ND ND NS 0.1 0.278 ND Arroyo Simi – Hitch Boulevard (07_HITCH) Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 ND Chlorpyrifos ug/L 0.014 0.81 ND ND ND ND 0.01 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.014 0.81 0.0012 ND NS ND | Diazinon | ug/L | 0.1 | 0.138 | ND | 0.163 | ND | ND | 0.1 | 0.278 | 0.019 | 0.0956 | | Diazinon ug/L 0.1 0.138 NS ND ND NS 0.1 0.278 ND Arroyo Simi – Hitch Boulevard (07_HITCH) Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.01 0.278 ND Chlorpyrifos ug/L 0.014 0.81 ND ND ND ND 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.01 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.014 0.81 0.0012 ND NS ND 0.014 | Arroyo Las Posa | as – Somis I | Road (06_ | SOMIS) | | | | | | | | | | Arroyo Simi – Hitch Boulevard (07_HITCH) Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 ND Conejo Creek – Adolfo Road (9B_ADOLF) Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.01 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.014 2.57 ND | Chlorpyrifos | ug/L | 0.014 | 0.81 | NS | 0.009 | 0.003 | NS | 0.014 | 2.57 | 0.263 | 0.111 | | Chlorpyrifos ug/L 0.014 0.81 0.058 0.002 0.005 0.004 0.014 2.57 0.7 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.014 0.278 ND Conejo Creek – Adolfo Road (9B_ADOLF) Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.014 2.57 ND Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.01 0.278 ND | Diazinon | ug/L | 0.1 | 0.138 | NS | ND | ND | NS | 0.1 | 0.278 | ND | ND | | Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 ND Conejo Creek - Adolfo Road (9B_ADOLF) Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.278 0.027 0 Conejo Creek - Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Arroyo Simi – Hi | itch Bouleva | ard (07_H | ITCH) | | | | | | | | | | Conejo Creek – Adolfo Road (9B_ADOLF) Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Chlorpyrifos | ug/L | 0.014 | 0.81 | 0.058 | 0.002 | 0.005 | 0.004 | 0.014 | 2.57 | 0.7 | 0.015 | | Chlorpyrifos ug/L 0.014 0.81 ND 0.003 ND 0.003 0.014 2.57 0.022 0 Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Diazinon | ug/L | 0.1 | 0.138 | ND | ND | ND | ND | 0.1 | 0.278 | ND | ND | | Diazinon ug/L 0.1 0.138 ND ND ND ND 0.1 0.278 0.027 0 Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Conejo Creek – | Adolfo Road | d (9B_AD | OLF) | | | | | | | | | | Conejo Creek – Hill Canyon Below N Fork (10_GATE) Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Chlorpyrifos | ug/L | 0.014 | 0.81 | ND | 0.003 | ND | 0.003 | 0.014 | 2.57 | 0.022 | 0.026 | | Chlorpyrifos ug/L 0.014 0.81 0.0012 ND NS ND 0.014 2.57 ND Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Diazinon | ug/L | 0.1 | 0.138 | ND | ND
 ND | ND | 0.1 | 0.278 | 0.027 | 0.014 | | Diazinon ug/L 0.1 0.138 ND ND NS ND 0.1 0.278 ND | Conejo Creek – I | Hill Canyon | Below N | Fork (10_G | ATE) | | | | | | | | | | Chlorpyrifos | ug/L | 0.014 | 0.81 | 0.0012 | ND | NS | ND | 0.014 | 2.57 | ND | ND | | Compine Create Court Booking Bold Broom Build (42, BELT) | Diazinon | ug/L | 0.1 | 0.138 | ND | ND | NS | ND | 0.1 | 0.278 | ND | ND | | Conejo Creek – S Fork Behind Belt Press Build (13_BELT) | Conejo Creek – | S Fork Behi | ind Belt P | ress Build (| (13_BELT) | | | | | | | | | Chlorpyrifos ug/L 0.014 0.81 ND NS 0.014 2.57 ND | Chlorpyrifos | ug/L | 0.014 | 0.81 | ND | NS | ND | NS | 0.014 | 2.57 | ND | ND | | Diazinon ug/L 0.1 0.138 ND NS ND NS 0.1 0.278 ND | Diazinon | ug/L | 0.1 | 0.138 | ND | NS | ND | NS | 0.1 | 0.278 | ND | ND | ND=not detected; NS=no sample collected due to site being dry. Results in **bold purple type** exceed the final WLA, but not the interim LA. Results in **bold red type** exceed the final WLA and the interim LA. ^{1.} Final Dry and Wet Weather WLAs for Stormwater Dischargers effective as of March 24, 2008 (R4-2005-009). ^{2.} Interim Dry and Wet Weather Load Allocations for Irrigated Agriculture; effective until March 24, 2016 (R4-2005-009). Table 23. Metals and Selenium in Water | Constituent | Units | Dry
Interim
WLA ¹ | Dry
Interim
LA ² | Event 44
Dry
Aug-2014 | Event 45
Dry
Nov-2014 | Event 48
Dry
Feb-2015 | Event 49
Dry
May-2015 | Wet
Interim
WLA ¹ | Wet
Interim
LA ² | Event 46
Wet
Dec-2014 | Event 47
Wet
Dec-2014 | Annual
Average ³ | |-----------------|---------|------------------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------|-----------------------------------|-----------------------------|-----------------------------|--------------------------------| | Revolon Slough | – Woo | d Road (0- | 4_WOOD) | | | | | | | | • | | | Total Copper | μg/L | 19 | 19 | 2.3 | 2.4 | 2.6 | 2.9 | 204 | 1390 | 66.3 | 90.2 | | | Total Nickel | μg/L | 13 | 42 | 6.7 | 8.1 | 4.9 | 6.1 | 74 ⁴ | 74 ⁴ | 42.5 | 72.7 | | | Total Selenium | μg/L | 13 | 6 | 34.1 | 19.5 | 19.5 | 18.5 | 290 ⁴ | 290 4 | 0.8 | 0.9 | | | Total Mercury 5 | lbs/yr | 1.7 | 2 | | | | | 4 | | | | 0.5 | | Calleguas Creel | k – Cam | arillo Stre | et CSUCI | (03_UNIV) | | | | | | | | | | Total Copper | μg/L | 19 | 19 | 2.3 | 2.4 | 2.6 | 2.9 | 204 | 1390 | 27 | 99.1 | | | Total Nickel | μg/L | 13 | 42 | 6.7 | 8.1 | 4.9 | 6.1 | 74 ⁴ | 74 ⁴ | 27.2 | 137.3 | | | Total Selenium | μg/L | | | 0.5 | 0.5 | 0.9 | 0.9 | | | 0.3 | 1.7 | | | Total Mercury 5 | lbs/yr | 3.3 | 3.9 | | | | | 10.5 | | | | 0.2 | - 1. Interim Dry Weather WLAs for Stormwater Dischargers; effective until March 2022 (R4-2006-0012) - 2. Interim Dry Weather LAs for Irrigated Agriculture; effective until March 2022 (R4-2006-0012) - 3. Mercury allocation is assessed as an annual load in suspended sediment. The water column mercury concentrations were used in calculating the loads, conservatively assuming that all mercury is on suspended sediment rather than being dissolved. The loads at each site are based on estimated annual concentrations (average of all monitored events at each site) and total annual flow calculated from preliminary streamflow data received from real time data loggers. - 4. No wet weather exceedances of these constituents were observed in the TMDL analysis so no interim limits were assigned for the TMDL. For comparison purposes the wet weather targets are included in the table. - 5. Interim WLA and LAs are expressed as annual loads. Total annual flow for 07/01/14 to 06/31/15 into Mugu Lagoon from Calleguas Creek and Revolon Slough is calculated as 6,102 Mgal/yr. As such, the interim WLA and LA shown correspond to the flow range of 0 to 15,000 to Mgal/yr, per R4-2006-0012. Results in **bold red type** exceed applicable interim WLA and LA. **Table 24. Monthly Mean Salts Concentrations** | | Units | | erim
mit | Jul-14 | Aug-14 | Sep-14 | Oct-14 | Nov-14 | Dec-14 | Jan-15 | Feb-15 | Mar-15 | Apr-15 | May-15 | Jun-15 | |---------------------------|-----------|------------|-------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | WLA | LA | | J | • | | | | | | | • | • | | | Revolon Slough | – Wood | Road (0 | 4_W00 | D) | | | | | | | | | | | | | Total Dissolved
Solids | mg/L | 1720 | 3995 | 3730 | 3544 | 3489 | 2727 | 3297 | 3510 | 3374 | 3316 | 3237 | 3132 | 3188 | 3692 | | Chloride | mg/L | 230 | 230 | 210 | 200 | 197 | 155 | 186 | 198 | 190 | 187 | 183 | 177 | 180 | 208 | | Sulfate | mg/L | 1289 | 1962 | 1982 | 1883 | 1854 | 1449 | 1752 | 1865 | 1793 | 1762 | 1720 | 1664 | 1694 | 1962 | | Boron | mg/L | 1.3 | 1.8 | 1.93 | 1.84 | 1.81 | 1.42 | 1.71 | 1.82 | 1.75 | 1.72 | 1.68 | 1.62 | 1.65 | 1.91 | | Calleguas Creek | – Cama | rillo Stre | et CSU | CI (03_UNI | V) | | | | | | | | | | | | Total Dissolved
Solids | mg/L | 1720 | 3995 | 1031 | 1070 | 1081 | 1090 | 1114 | 1008 | 1039 | 1049 | 1061 | 1082 | 1093 | 1073 | | Chloride | mg/L | 230 | 230 | 217 | 225 | 228 | 230 | 235 | 211 | 218 | 220 | 223 | 228 | 230 | 226 | | Sulfate | mg/L | 1289 | 1962 | 264 | 274 | 276 | 278 | 284 | 258 | 266 | 268 | 272 | 276 | 279 | 274 | | Conejo Creek – I | loward I | Road Br | idge (9A | _HOWAR) | | | | | | | | | | | | | Total Dissolved
Solids | mg/L | 1720 | 3995 | 957 | 1014 | 1012 | 1041 | 1063 | 964 | 979 | 985 | 1015 | 1028 | 1040 | 1024 | | Chloride | mg/L | 230 | 230 | 205 | 218 | 217 | 224 | 229 | 206 | 210 | 211 | 218 | 221 | 224 | 220 | | Sulfate | mg/L | 1289 | 1962 | 240 | 255 | 255 | 262 | 268 | 242 | 246 | 248 | 255 | 259 | 262 | 258 | | Conejo Creek – L | Baron Br | others l | Nursery | (9B_BARC | ON) | | | | | | | | | | | | Total Dissolved
Solids | mg/L | 1720 | 3995 | 689 | 707 | 687 | 711 | 750 | 789 | 777 | 766 | 763 | 768 | 773 | 752 | | Chloride | mg/L | 230 | 230 | 154 | 158 | 153 | 159 | 169 | 178 | 175 | 172 | 172 | 173 | 174 | 169 | | Sulfate | mg/L | 1289 | 1962 | 171 | 176 | 171 | 177 | 187 | 197 | 194 | 191 | 190 | 191 | 192 | 187 | | Arroyo Simi – Tie | erra Reja | da Roa | d (07_TI | ERRA) | | | | | | | | | | | | | Total Dissolved
Solids | mg/L | 1720 | 3995 | 1152 | 1145 | 1141 | 1138 | 1151 | 1209 | 1189 | 1177 | 1174 | 1179 | 1184 | 1202 | | Chloride | mg/L | 230 | 230 | 173 | 172 | 171 | 171 | 173 | 182 | 179 | 177 | 176 | 177 | 178 | 181 | | Sulfate | mg/L | 1289 | 1962 | 433 | 430 | 429 | 427 | 433 | 455 | 448 | 443 | 442 | 444 | 445 | 452 | | Boron | mg/L | 1.3 | 1.8 | 0.66 | 0.66 | 0.66 | 0.65 | 0.66 | 0.69 | 0.68 | 0.68 | 0.67 | 0.68 | 0.68 | 0.69 | #### Notes: Results in **bold red type** exceed both the applicable interim WLA and LA. Results in **bold purple type** exceed the interim WLA, but not the interim LA. a. Monthly dry weather mean salt concentrations were generated using mean daily salt concentrations (from 5-min data) for days that met the definition of dry weather in the Salts TMDL (i.e., discharge < 86th percentile flow and no measureable rain in preceding 24 hrs). The 86th percentile of mean daily discharge at 03_Univ (generated using 5-min discharge data for the period July 1, 2014-June 30, 2015) was used as the flow-related threshold for distinguishing wet and dry days for all five compliance sites. Daily precipitation records for 23 gages in the CCW watershed (accessed via the VCWPD Hydrologic Data Server) were used to determine days with "measureable precipitation". Days were considered as having measureable precipitation if two or more rain gages in the watershed received 0.1 inch or more of precipitation. ### **POTW COMPLIANCE** Table 25. Nitrogen Compounds - POTWs | Site & Constituent | Units | Final WLA ¹ | Event 44
Dry
Aug-14 | Event 45
Dry
Nov-14 | Event 48
Dry
Feb-15 | Event 49
Dry
May-15 | |------------------------------|----------------|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Simi Valley Water Quality Co | ntrol Plant (0 | O7D_SIMI) | | | | | | Ammonia as N | mg/L | 3.5 ² , 7.8 ³ | 1.3 | 1.1 | 0.6 | 1.4 | | Nitrate as N | mg/L | 9 | 6.4 | 5.1 | 6.1 | 6.3 | | Nitrite as N | mg/L | 0.9 | 0.01 | 0.03 | ND | 0.03 | | Nitrate-N + Nitrite-N | mg/L | 9 | 6.4 | 5.1 | 6.1 | 6.3 | | Camarillo Water Reclamation | n Plan (9AD_ | CAMA) | | | | | | Ammonia as N | mg/L | 3.1 ² , 5.6 ³ | 1.2 | 1.2 | 1.3 | 0.9 | | Nitrate as N | mg/L | 9 | 8.1 | 7.6 | 5.2 | 7.7 | | Nitrite as N | mg/L | 0.9 | ND | 0.5 | 0.1 | ND | | Nitrate-N + Nitrite-N | mg/L | 9 | 8.1 | 8.1 | 5.2 | 7.7 | | Hill Canyon Wastewater Trea | tment Plant | (10D_HILL) | | | | | | Ammonia as N | mg/L | 2.4 ² , 3.3 ³ | 1.8 | 1.9 | 1.7 | 1.7 | | Nitrate as N | mg/L | 9 | 7.2 | 7.3 | 8 | 7.4 | | Nitrite as N | mg/L | 0.9 | ND | ND | ND | ND | | Nitrate-N + Nitrite-N | mg/L | 9 | 7.2 | 7.3 | 8 | 7.4 | ND=constituent not detected at the MDL. 1. The effective date for these WLAs was July 16, 2007 (R4-2008-009) 2. WLAs as Average Monthly Effluent Limit 3. WLAs as Maximum Daily Effluent Limit Table 26. OC Pesticides, PCBs, and Siltation - POTWs | POTW &
Constituent | Units | Final WLA ¹ | Event 44
Dry
Aug-2014 | Event 45
Dry
Nov-2014 | Event 48
Dry
Dec-2014 | Event 49
Dry
May-2015 | |------------------------------|------------|------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | Camarillo Water Red | clamation | Plant (9AD_CA | MA) | | | | | Total Chlordane ² | ng/L | 1.2 | ND | ND | ND | ND | | 4,4'-DDD | ng/L | 1.7 | ND | ND | ND | ND | | 4,4'-DDE | ng/L | 1.2 | ND | ND | ND | ND | | 4,4'-DDT | ng/L | 1.2 | ND | ND | ND | ND | | Dieldrin |
ng/L | 0.28 | ND | ND | ND | ND | | PCBs ³ | ng/L | 0.34 | ND | ND | ND | ND | | Toxaphene | ng/L | 0.33 | ND | ND | ND | ND | | Hill Canyon Wastew | ater Treat | ment Plant (10 | D_HILL) | | | | | Total Chlordane ² | ng/L | 1.2 | ND | ND | ND | ND | | 4,4'-DDD | ng/L | 1.7 | ND | ND | ND | ND | | 4,4'-DDE | ng/L | 1.2 | ND | ND | ND | ND | | 4,4'-DDT | ng/L | 1.2 | ND | ND | ND | ND | | Dieldrin | ng/L | 0.28 | ND | ND | ND | ND | | PCBs ³ | ng/L | 0.34 | ND | ND | ND | ND | | Toxaphene | ng/L | 0.33 | ND | ND | ND | ND | | Simi Valley Water Q | uality Cor | ntrol Plant (07D | _SIMI) | | | | | Total Chlordane ² | ng/L | 1.2 | ND | ND | ND | ND | | 4,4'-DDD | ng/L | 1.7 | ND | ND | ND | ND | | 4,4'-DDE | ng/L | 1.2 | ND | ND | DNQ | ND | | 4,4'-DDT | ng/L | 1.2 | ND | ND | ND | ND | | Dieldrin | ng/L | 0.28 | ND | ND | ND | ND | | PCBs ³ | ng/L | 0.34 | ND | ND | ND | ND | | Toxaphene | ng/L | 0.33 | ND | ND | ND | ND | ND=constituent not detected at the MDL. 1. Final WLAs were added to each of the POTWs' permits in 2015. 2. Total chlordane is the sum of alpha and gamma-chlordane. 3. PCBs concentrations are the sum of the seven aroclors identified in CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260). Table 27. Toxicity, Chlorpyrifos, and Diazinon - POTWs | POTW & Constituent | Units | Final
WLA | | Event 45
Dry
Nov-2014 | Dry | Dry | |---------------------|------------|---------------|-----------|-----------------------------|-----|--------| | Chlorpyrifos | μg/L | 0.0133 | , | ND | ND | 0.0000 | | Chiorpythos | . • | 0.0133 | ND | ND | ND | 0.0008 | | Diazinon | μg/L | 0.1 | ND | ND | ND | ND | | Hill Canyon Wastew | ater Treat | ment Plant (| 10D_HILL) | | | | | Chlorpyrifos | μg/L | 0.014 | ND | ND | ND | ND | | Diazinon | μg/L | 0.1 | ND | ND | ND | ND | | Simi Valley Water Q | uality Con | trol Plant (0 | 7D_SIMI) | | | | | Chlorpyrifos | μg/L | 0.014 | 0.002 | ND | ND | ND | | Diazinon | μg/L | 0.1 | ND | ND | ND | ND | ND=constituent not detected at MDL. Table 28. Metals and Selenium - POTWs | POTW &
Constituent | Units | Daily Max
WLA | Monthly
Avg WLA | WLA | Event 44
Dry
Aug-2014 | Event 45
Dry
Nov-2014 | Dry | Event 49
Dry
May-2015 | |----------------------------|---------------|-------------------|--------------------|-------------------|-----------------------------|-----------------------------|--------|-----------------------------| | Camarillo Wate | er Reclamati | ion Plant (9. | AD_CAMA) | | | | | | | Total Copper | μg/L | 57.0 ¹ | 20.0 ¹ | | 4.7 | 4.3 | 3.2 | 4.2 | | Total Nickel | μg/L | 16.0 ¹ | 6.2 ¹ | | 3.3 | 2.9 | 2.4 | 2.9 | | Total Mercury 3 | lbs/month 4 | | | 0.03 1 | 0.0006 | 0.0002 | 0.0007 | 0.0002 | | Hill Canyon Wa | astewater Tr | eatment Pla | ant (10D_Hi | ILL) | | | | | | Total Copper | μg/L | 20.0 ¹ | 16.0 ¹ | | 2.9 | 1.5 | 3 | 4.1 | | Total Nickel | μg/L | 8.3 ¹ | 6.4 ¹ | | 2.4 | 2.7 | 1.9 | 1.9 | | Total Mercury ³ | lbs/month 4 | | | 0.23 1 | 0.004 | 0.003 | 0.02 | 0.02 | | Simi Valley Wa | ter Quality (| Control Plai | nt (07D_SIN | 1I) | | | | | | Total Copper | μg/L | 31.0 ² | 30.5 ² | | 6.4 | 5.7 | 3.6 | 4.8 | | Total Nickel | μg/L | 960 ² | 169 ² | | 1.9 | 1.7 | 1.3 | 1.9 | | Total Mercury 3 | lbs/month 4 | | | 0.18 ¹ | 0.0009 | 0.0004 | 0.001 | 0.0004 | Interim WLA; effective until March 26, 2017 (R4-2006-012) Final WLA; effective date was March 26, 2007 (R4-2006-012) For total mercury concentrations reported as not detected (ND); one half of the method detection limit was used to calculate the monthly loads During load calculation, the average monthly flow for each POTW was multiplied by the number of days in the month corresponding to when the sample was collected to get a total monthly flow. The total monthly flow was multiplied by the concentration of total mercury to yield the monthly total mercury load in pounds. Table 29. Salts - POTWs | POTW & Constituent | Units | Monthly Avg
Interim WLA | Jul-14 | Aug-14 | Sep-14 | Oct-14 | Nov-14 | Dec-14 | Jan-15 | Feb-15 | Mar-15 | Apr-15 | May-15 | Jun-15 | |------------------------|---------|----------------------------|------------|------------------------|--------|------------|--------|--------|------------|------------|--------|--------|------------|--------| | Camarillo Water Re | eclamat | ion Plant (9Al | D_CAM | 4) ¹ | | | | | | | | | | | | Boron | mg/L | N/A | 0.42 | 0.49 | 0.53 | 0.57 | 0.51 | 0.52 | 0.46 | 0.42 | 0.417 | 0.54 | 0.57 | 0.45 | | Chloride | mg/L | 216 | 215 | 218 | 217 | 212 | 214 | 203 | 212 | 211 | 209 | 215 | 215 | 218 | | Sulfate | mg/L | 283 | 220 | 275 | 276 | 262 | 267 | 248 | 255 | 248 | 261 | 257 | 290 | 289 | | Total Dissolved Solids | mg/L | 1012 | 1032 | 1110 | 1084 | 1040 | 1026 | 1018 | 1026 | 1032 | 1008 | 980 | 1100 | 928 | | Hill Canyon Waster | water T | reatment Plan | nt (10D_ | HILL) | | | | | | | | | | | | Boron | mg/L | N/A | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Chloride | mg/L | 189 | 151 | 152 | 143 | 154 | 151 | 151 | 150 | 155 | 153 | 155 | 154 | 153 | | Sulfate | mg/L | N/A | 119 | 119 | 122 | 101 | 149 | 177 | 149 | 131 | 157 | 155 | 190 | 164 | | Total Dissolved Solids | mg/L | N/A | 602 | 615 | 610 | 593 | 656 | 694 | 640 | 639 | 686 | 674 | 729 | 690 | | Simi Valley Water | Quality | Control Plant | (07D_S | імі) | | | | | | | | | | | | Boron | mg/L | N/A | 0.44 | 0.5 | 0.52 | 0.5 | 0.48 | 0.48 | 0.45 | 0.46 | 0.49 | 0.45 | 0.5 | 0.44 | | Chloride | mg/L | 183 | 136 | 132 | 127 | 132 | 136 | 136 | 140 | 140 | 130 | 154 | 153 | 136 | | Sulfate | mg/L | 298 | 200 | 196 | 178 | 160 | 209 | 214 | 210 | 210 | 210 | 248 | 247 | 200 | | Total Dissolved Solids | mg/L | 955 | 732 | 776 | 666 | 684 | 746 | 764 | 722 | 761 | 808 | 809 | 829 | 732 | N/A: "The 95th percentile concentration is below the Basin Plan objective so interim limits are not necessary." Results in **bold red type** exceed applicable interim WLA. ^{1.} Due to water conservation and alterations in the composition of the water supply available in the POTW service area, effluent salt concentrations have increased since the adoption of the TMDL. The increased salts concentrations are being addressed through a Time Schedule Order that provides for higher TDS and sulfate interim limits and a stay of interim limits for chloride (SWRCB WQO 2003-0019). #### COMPLIANCE COMPARISON DISCUSSION #### OC Pesticides, Toxicity, Metals, Nutrients, and Salts The compliance comparison shown in Table 20 through Table 30 above demonstrates that for the most part, the CCW is in compliance with the applicable interim or final WLAs and LAs currently in effect for the Nutrients, OC Pesticides, Toxicity, Salts, and Metals TMDLs. The following observations summarize the compliance status with these load allocations: - 1. No exceedances of the interim WLAs or LAs for PCBs were observed at any location in the watershed. One exceedance of the 4,4'-DDT interim WLA and LA under the OC Pesticides TMDL was observed in sediments of Conejo Creek. - 2. Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed in Mugu Lagoon, Revolon Slough, Beardsley Wash, Calleguas Creek, Arroyo Las Posas, and Arroyo Simi. Most of the exceedances occurred during dry events, but there was one wet weather exceedance during wet weather in Mugu Lagoon. No exceedances of final nutrient WLAs were measured at any POTW compliance site. - 3. Four exceedances of the final MS4 WLAs for chlorpyrifos were measured at receiving water sites during the dry weather; however, there were no exceedances of the interim LAs. There were 12 exceedances of the final MS4 chlorpyrifos WLA during wet weather and one instance where the chlorpyrifos concentration was above the final MS4 WLA and the interim LA. In addition, there was one instance where the diazinon final MS4 WLA and interim LA were exceeded during dry weather. There were no exceedances of the final WLAs for chlorpyrifos or diazinon at any POTW. - 4. There were four exceedances of the interim LA or final MS4 WLA for total selenium measured during the four dry weather sampling events of 2014-2015 at the 04_WOOD site. As discussed in the TMDL, a primary source of selenium in Revolon Slough is considered to be rising groundwater levels and the interim allocations were to be considered in this context. - 5. Although toxicity was observed at some locations in the watershed, TIEs were initiated for all samples meeting the requirements in the QAPP. As a result, the Stakeholders are in compliance with the toxicity WLAs and LAs per the requirements of the TMDL. - 6. In general, receiving water sites were in compliance with interim LAs and MS4 WLAs established by the Salts TMDL; the only exception being exceedances in sulfate and boron measured at 04_WOOD in the Revolon Slough watershed, and exceedances of chloride limits at 03_UNIV in the Calleguas Creek watershed. POTWs are in compliance with interim salts WLAs, with the exception of Camarillo Water Reclamation Plant (WRP), which experienced exceedances of chloride, sulfate, and TDS. The exceedances of interim salts WLAs for the Camarillo WRP have resulted from increased influent salt concentrations due to water conservation and a shift in the composition of the water supplied within the service area. Since the process for addressing salts is a watershed effort involving significant capital investments, the Camarillo WRP has received a time schedule order to adjust the interim limits for TDS and sulfate. During the last monitoring year, application of interim limits for chlorine was stayed by State Board Order 2003-019. As a result, the interim limits in the TMDL are not the currently applicable interim limits for the Camarillo WRP discharge. #### **Nutrients** Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed at sites in Mugu Lagoon, Revolon Slough, Beardsley Wash, Arroyo Las Posas, and
Calleguas Creek. Nitrate-N exceedances are summarized in Table 31 below. The table focuses on Nitrate-N results since Nitrate-N + Nitrite-N exceedances were caused by high Nitrate-N values. Nitrite-N was below the 1 mg/L target at all sites and events. Table 30. Exceedances of Nitrate-N Numeric TMDL Target of 10 mg/L | Nitrogen TMDL | Event 44
Dry | Event 45
Dry | Event 46
Wet | Event 47
Wet | Event 48
Dry | Event 49
Dry | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Compliance Sites | Aug-14 | Nov-14 | Dec-14 | Dec-14 | Feb-15 | May-15 | | 01_RR_BR | No | Yes | Yes | No | No | Yes | | 02_PCH | Yes | Yes | NS | NS | Yes | Yes | | 03_UNIV | No | No | No | No | No | No | | 04_WOOD | Yes | Yes | No | No | Yes | Yes | | 05_CENTR | Yes | No | No | No | Yes | Yes | | 06_SOMIS | NR | Yes | No | No | Yes | NS | | 07_HITCH | Yes | No | No | No | Yes | No | | 07_MADER | No | No | No | No | No | No | | 9A_HOWAR | No | No | No | No | No | No | | 9B_ADOLF | No | No | No | No | No | No | | 10_GATE | No | No | No | No | No | No | | 12_PARK | No | No | NR | NR | No | No | | 13_BELT | No | No | NR | NR | No | No | NR=not required No signifies that monitoring results were below the Nitrate-N target during the monitoring event. Yes signifies that monitoring results were above the Nitrate-N target during the monitoring event. Nitrogen exceedances occurred primarily in areas of the watershed with agricultural inputs. Reaches downstream of POTW discharges are generally in compliance with the TMDL requirements and urban discharges were determined to be negligible during the TMDL analysis and therefore do not have TMDL allocations. The final nitrogen LAs for agriculture became effective in July 2010. The exceedances of the nitrogen LAs since that time have triggered the inclusion of nitrogen in the Agriculture Water Quality Management Plan (AWQMP) required under the Ag Waiver that is currently being implemented in the CCW. Agricultural education courses have included various classes focused on nitrogen management; AWQMP implementation will continue to target nitrogen and include best management practices (BMPs) to address these exceedances. Compliance with the load allocations is determined through implementation of the AWQMP. #### **Chlorpyrifos** Further examination of the chlorpyrifos exceedances at receiving water sites was needed to deterine whether urban dischargers caused the exceedance of the receiving water allocations. The WLAs for urban dischargers are in the receiving water, while agricultural dischargers are not yet required to be in compliance with the chlorpyrifos final load allocations. Monitoring data at urban land use sites from each subwatershed for which an exceedance was observed was compared to the WLA to determine if MS4 discharges exceeded the allocation during the monitoring event where elevated receiving water concentrations were observed. If the urban land use data were below the WLA, the MS4 dischargers were considered to be in compliance with the WLAs. If the urban land use data were above the WLA, the MS4 could be contributing to the exceedance in the receiving water. As shown in Table 32, there were 16 exceedances of chlorpyrifos targets at the receiving water sites. In most cases, urban land use data for the same event was less than the interim MS4 WLA for chlorpyrifos. However, in two cases, the urban land use data for the same event exceeded the final WLA, but did not exceed the interim LA. In addition, in one case, the urban land use data exceeded the MS4 WLA and the interim LA for chlorpyrifos. The urban land use site data for diazinon did not exceed the MS4 WLA during the same event the receiving water site had an exceedance of the diazinon MS4 WLA. Table 31. Compliance and Land Use Sites Comparison to Determine MS4 Chlorpyrifos WLA Compliance | Sites
Exceeding
WLAs | Constituent | Event 44
Dry
Aug-14 | Event 45
Dry Nov-14 | Event 46
Wet
Dec-14 | Event 47
Wet
Dec-14 | Event 48
Dry
Feb-15 | Event 49
Dry
May-15 | |----------------------------|--------------|---------------------------|------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | 01_RR_BR | Chlorpyrifos | | NA ¹ | NA ¹ | NA ¹ | | | | 03_UNIV | Chlorpyrifos | | NA ¹ | NA ¹ | NA ¹ | | | | 04_WOOD | Chlorpyrifos | | No | Yes | Yes ² | | | | 06_SOMIS | Chlorpyrifos | | | NA ¹ | NA ¹ | | | | 07_HITCH | Chlorpyrifos | No | | No | No | | | | 9B_ADOLF | Chlorpyrifos | | | Yes ² | No | | | | 04_WOOD | Diazinon | | No | | | | | No= none of the MS4 land use site for the subwatershed exceeded the MS4 WLA during the monitoring event. Yes=the MS4 land use site for the subwatershed exceeded the MS4 WLA during the monitoring event. Blank cells indicate that a WLA exceedance did not occur at the compliance monitoring site during a particular event. ^{1.} There are no urban land use monitoring sites in these reaches. ^{2.} Urban land use sites exceeded the MS4 WLA, but not the interim LA #### Selenium Selenium concentrations in Revolon Slough at 04_WOOD exceeded the urban dischargers interim MS4 WLA and the agricultural dischargers interim LA during all four dry weather monitoring events. A summary of monitoring results for total selenium at sites in the Revolon Slough subwatershed is shown in Table 33 below. For discussion purposes both dry weather and wet weather monitoring results are included in the table. Table 32. Selenium Monitoring Data (ug/L) in the Revolon Slough Subwatershed | | | | | Wet Weather Events | | | | | | | |----------------|-------|-------|------|--------------------|--------|--------|--------|---------------------|--------|--------| | Site ID | Use | Inte | rim | 44 | 45 | 48 | 49 | | 46 | 47 | | | | WLA 1 | LA 1 | Aug-14 | Nov-14 | Feb-15 | May-15 | Target ² | Dec-14 | Dec-14 | | 04_WOOD | RW | 13 | 6 | 34.1 | 19.5 | 19.5 | 18.5 | 290 | 8.0 | 0.9 | | 04D_WOOD | Ag | | 6 | NS | 1.9 | 1.3 | 0.6 | 290 | 0.9 | 1.1 | | 05D_SANT_VCWPD | Ag | | 6 | 46 | 46.2 | 12.5 | 45.7 | 290 | 7.7 | 1.7 | | 04D_VENTURA | Urban | 13 | | 0.3 | 0.4 | 0.3 | 0.6 | 290 | 0.07 | 0.1 | ^{1.} Interim WLAs for stormwater permittees and interim LAs for agricultural dischargers are effective until March 2022 (R4-2006-012). Results in **bold type** exceed applicable interim WLA or interim LA. As noted in the table above, high levels of selenium were also observed at 05D_SANT_VCWPD, an agricultural use site in the upper reach of the subwatershed. As discussed in the TMDL, a primary source of selenium in Revolon Slough is considered to be rising groundwater levels and the interim allocations were to be considered in this context. #### Salts TDS, sulfate, and boron concentrations in Revolon Slough at 04_WOOD exceeded the interim MS4 WLA during all twelve months of the monitoring period. In addition, sulfate concentrations exceeded the both the interim WLA and the LA during two months of the monitoring period, while boron concentrations exceeded both the interim WLA and the LA during five months of the monitoring period. A summary of monitoring results for total dissolved solids, sulfate, and boron at sites in the Revolon Slough subwatershed are shown in Table 34 through Table 36 below. No wet weather exceedances were observed in the TMDL analysis so no interim limits were assigned for the TMDL. For comparison purposes, the wet weather targets were included in this table. RW - Receiving water compliance site; Ag - Agricultural; Urban - Urban NS - Not sampled, dry Table 33. Total Dissolved Solids Monitoring Data (mg/L) in Revolon Slough | Site ID | Use | Interim | Limits | Int 44 | 4 Aug-14 | Con 11 | 004.14 | Nev 14 | Dec 14 | lon 1E | Eab 15 | Mor 15 | A m # 4 E | May 15 | lun 45 | |--------------------------|-------|---------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|--------| | | - | WLA | LA | Jui-14 | Aug-14 | Sep-14 | OCt-14 | NOV-14 | Dec-14 | Jan-15 | reb-15 | Mar-15 | Apr-15 | May-15 | Jun-15 | | 04_WOOD 1 | RW | 1720 | 3995 | 3730 | 3544 | 3489 | 2727 | 3297 | 3510 | 3374 | 3316 | 3237 | 3132 | 3188 | 3692 | | 04D_WOOD ² | Ag | | 3995 | | NS | | | 1480 | | | 1010 | | | 1830 | | | 04D_VENTURA ² | Urban | 1720 | | | 730 | | | 800 | | | 1150 | | | 5740 | | NS=no sample, dry 2. Data presented are quarterly dry weather grabs Results in **bold type** exceed applicable interim WLA or interim LA. Table 34. Sulfate Monitoring Data (mg/L) in Revolon Slough | Site ID Use | | Interim | Interim Limits Jul-14 | | Aug 14 | Son-14 | p-14 Oct-14 | Nov 14 | Dec-14 | Jan-15 | Eab 15 | Mor 15 | Apr 15 | Mov 15 | lun-15 | |--------------------------|-------|---------|-----------------------|--------|--------|--------|---------------|---------|--------|--------|---------|----------|--------|--------|---------| | | | WLA | LA | Jui-14 | Aug-14 | 3ep-14 | Зер-14 ОСС-14 | 1404-14 | Dec-14 | Jan-13 | 1 60-13 | IVIAI-13 | Apr-15 | Way-13 | Juli-13 | | 04_WOOD ¹ | RW | 1289 | 1962 | 1982 | 1883 | 1854 | 1449 | 1752 | 1865 | 1793 | 1762 | 1720 | 1664 | 1694 | 1962 | | 04D_WOOD ² | Ag | | 1962 | | NS | | | 688 | | | 344 | | | 926.4 | | | 04D_VENTURA ² | Urban | 1289 | | | 210 | | | 271 | | | 281 | | | 348 | | NS=no sample, dry Data presented are quarterly dry weather grabs Results in **bold type** exceed applicable interim WLA or interim LA. Table 35. Boron Monitoring Data (mg/L) in Revolon Slough | Site ID Use | | Interim Limits | lul 44 | Aug 44 | Son 14 | Oct-14 | Nov 44 | Doc-14 | Jan-15 | Cob 15 | Mor 15 | A m # 4 E | May 15 | lun 4E | | |--------------------------|-------|----------------|--------|--------|------------|--------|----------|---------|--------|--------|---------|-----------|--------|----------|---------| | One is | • | WLA | LA | Jui-14 | Aug-14 Sep | Sep-14 | + 001-14 |
1400-14 | Dec-14 | Jan-15 | 1 60-13 | IVIAI-13 | Api-13 | iviay-13 | Juli-13 | | 04_WOOD 1 | RW | 1.3 | 1.8 | 1.93 | 1.84 | 1.81 | 1.42 | 1.71 | 1.82 | 1.75 | 1.72 | 1.68 | 1.62 | 1.65 | 1.91 | | 04D_WOOD ² | Ag | | 1.8 | | NS | | | 0.80 | | | 0.46 | | | 1.05 | | | 04D_VENTURA ² | Urban | 1.3 | | | 0.30 | | | 0.33 | | | 0.57 | | | 0.40 | | NS=no sample, dry Data presented are quarterly dry weather grabs Results in **bold type** exceed the applicable interim WLA or interim LA ^{1.} Data presented are monthly means ^{1.} Data presented are monthly means ^{1.} Data presented are monthly means As noted in the previous tables, high levels of total dissolved solids, sulfate, and boron were measured at the 04D_WOOD throughout the monitoring period, exceeding the interim MS4 WLAs for all constituents. In addition, sulfate and boron exceeded the interim LAs, twice and five times respectively. However, measured concentrations did not exceed the interim agricultural LAs. This site represents agricultural discharge water quality in the Revolon Slough subwatershed. Samples were not taken during the August 2014 sampling event due to no flow being present. 04D_VENTURA, which is an urban land use site in the upper Revolon Slough watershed, had concentrations consistently below the interim MS4 WLAs for TDS, sulfate, and boron. The persistent dry conditions in the watershed may be contributing to the higher salts concentrations observed in the receiving waters. ## Revisions and Recommendations The QAPP specifies that upon the completion of each CCWTMP annual report, revisions to standard procedures will be made, including: site relocation, ceasing monitoring efforts and/or deleting certain constituents from sample collection. An updated QAPP was submitted in December 2014 that incorporated the proposed revisions and recommendations included in the previous six CCWTMP annual reports. Additional modifications that reflect the most current lab methods and procedures for the field conditions were also part of the QAPP update process. Monitoring for the 2015-2016 monitoring year is currently being conducted per the revised QAPP. At this time, the Stakeholders do not have any proposed revisions and recommendations, but may have some upon completion of the first monitoring year under the updated QAPP. These will be incorporated into the 2015-2016 eighth-year annual report. Appendix A: Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts # Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary # Event 44: Quarterly Sampling and Sediment Collection Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Amy Howk (KLI) Crew #2: Justin Martos (Fugro), Jeff Polis (Fugro) Sampling Dates: Receiving water and land use sites: August 5th and 6th, 2014 Sampling Type: Water Chemistry, Toxicity, Salts and Sediment #### SITES SAMPLED | | | | | Constit | tuents | | | |------------------|----------------|-----------------------|----------|---------|-----------|--|-------| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | 04_WOOD | 8/5/14 | X | X | Х | Х | Х | | | 04D_VENTURA | 8/6/14 | Х | | Х | | Х | Х | | 01T_ODD2_DCH | 8/6/14 | Х | | Х | Х | Х | | | 02_PCH | 8/5/14 | Х | | | Х | | | | 03_UNIV | 8/5/14 | Х | х | Х | Х | Х | | | 9B_ADOLF | 8/5/14 | Х | х | | Х | Х | | | 9BD_ADOLF | 8/6/14 | Х | | Х | | Х | Х | | 9A_HOWAR | 8/5/14 | Х | | | Х | | | | 05D_SANT_VCWPD | 8/6/14 | Х | | Х | Х | Х | | | 05_CENTR | 8/6/14 | Х | | | Х | | | | 13_SB_HILL | 8/6/14 | Х | | | | Х | Х | | 10_GATE | 8/5/14 | Х | х | | Х | Х | | | 12_PARK | 8/6/14 | Х | | | Х | | | | 13_BELT | 8/5/14 | Х | X | | Х | Х | | | 07D_HITCH_LEVEE2 | 8/5/14 | Х | | | Х | Х | Х | | 07_HITCH | 8/5/14 | Х | × | | Х | Х | | | 07_MADER | 8/6/14 | Х | | | Х | | | | | | Constituents | | | | | | | | | |----------|----------------|-----------------------|--|--|-----------|--|-------|--|--|--| | Site ID | Sample
Date | General
Parameters | | | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | | | 07D_CTP | 8/6/14 | Х | | | | Х | Х | | | | | 07T_DC_H | 8/6/14 | Х | | | | Х | | | | | ## SITES NOT SAMPLED | Site ID | Reason for Omission | |-----------|---------------------| | 02D_BROOM | Site was dry. | | 04D_WOOD | Site was dry. | | 06T_FC_BR | Site was dry. | | 06_SOMIS | Site was dry. | | 9BD_GERRY | Site was dry. | #### **SEDIMENT SAMPLED** | OLDINILITY OAMI LLD | | | | | | | | |---------------------|----------------------|-----------------------|--|--|--|--|--| | Site ID | Sediment
Toxicity | Sediment
Chemistry | | | | | | | 02_PCH | Х | Х | | | | | | | 03_UNIV | Х | Х | | | | | | | 04_WOOD | Х | Х | | | | | | | 06_SOMIS | | Х | | | | | | | 07_HITCH | | Х | | | | | | | 9A_HOWAR | Х | Х | | | | | | | 9B_ADOLF | | Х | | | | | | ## **DEVIATIONS FROM QAPP** | Site ID | Deviation | |----------------|---| | 02_PCH | Flow was not measured due to tidal influence. Site was sampled near low tide to maximize watershed water. | | 04D_VENTURA | Intermediate container (Ziploc bag) used to fill sample bottles. | | 05 CENTR | Intermediate container (Nitrate bottle) used to fill sample bottles. | | 05D_SANT_VCWPD | Intermediate container (Ziploc bag) used to fill sample bottles. | | 07D_CTP | Intermediate container (Ziploc bag) used to fill sample bottles. | | 07T_DC_H | Intermediate container (Ziploc bag) used to fill sample bottles. | | 9BD_ADOLF | Intermediate container (Ziploc bag) used to fill sample bottles. | #### **ADDITIONAL COMMENTS** Sediment chemistry taken at non-toxicity sites were collected into a Ziploc bag and then sub-sampled into the chemistry containers. Sediment chemistry at the toxicity sites were sub-sampled by Pacific EcoRisk after the sediment was homogenized. #### **FOLLOW UP ACTIONS** None | Prepared by: | Amy Howk, KLI | Date: | August 19, 2014 | |--------------|---------------------|-------|----------------------------------| | Reviewed by: | Greg Cotten, KLI | Date: | September 4 th , 2014 | | Approved by: | Michael Marson, LWA | Date: | January 9, 2015 | # **Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary** # **Event 44: Mugu Lagoon Water** **Sampling Crew:** MBC Applied Environmental Sciences: Wayne Dossett, D.J. Schuessler Sampling Date: 19 August 2014 **Sampling Type:** Water Chemistry #### SITES SAMPLED | | Constituents | | | | | | | | |--|---|-----|-----|---|----------------|-----------------|--|--| | Site ID | General
Water
Quality
Parameters | DOC | TSS | PCBs, OP, OC, and
Pyrethroid
Pesticides | Nutrients | Metals w/
Hg | | | | 01_BPT_14
Central Western
Arm | X | X | X | | | X | | | | 01_BPT_15
Central Lagoon | X | X | X | | | X | | | | 01_BPT_3
Eastern Arm | X | X | X | | | X | | | | 01_BPT_6
East Western
Arm | X | X | X | | | X | | | | 01_RR_BR
Ronald Reagan
Bridge | X | X | X | X | X ¹ | X | | | | 01_SG_74
Central Lagoon
S. of Drain #7 | X | X | X | | | X | | | ^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P. #### SITES NOT SAMPLED None #### **DEVIATIONS FROM QAPP** Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet. #### FOLLOW UP ACTIONS None | Prepared by: | David Vilas, MBC | Submittal Date: | 22 August 2014 | |--------------|---------------------|-----------------|-----------------| | Approved by: | Michael Marson, LWA | Submittal Date: | 07 January 2015 | # **Event 44: Mugu Lagoon Sediment** **Sampling Crew:** MBC Applied Environmental Sciences: Wayne Dossett, James Nunez, D.J. Schuessler Sampling Date: 19 and 20 August 2014 **Sampling Type:** Sediment Chemistry, Characteristics and Toxicity #### SITES SAMPLED | | Constituents | | | | | | | | |--|----------------------|-------------------------------|-------------------------|--|--|--|--|--| | Site ID | Sediment
Analysis | Particle Size
Distribution | Total Organic
Carbon | Sediment Toxicity
Mortality /
Growth | | | | | | 01_BPT_14
Central Western
Arm | X | X | X | X | | | | | | 01_BPT_15
Central Lagoon | X | X | X | X | | | | | | 01_BPT_3
Eastern Arm | X | X | X | X | | | | | | 01_BPT_6 East Western Arm | X | X | X | X | | | | | | 01_SG_74 Central
Lagoon
S. of Drain #7 | X | X | X | X | | | | | #### SITES NOT SAMPLED None ### **DEVIATIONS FROM QAPP** None #### **FOLLOW UP ACTIONS** | Prepared by: | David Vilas, MBC | Submittal Date: | 22 August 2014 | | |--------------|---------------------|-----------------|-----------------|--| | Approved by: | Michael Marson, LWA | Submittal Date: | 07 January 2015 | | ## **Event 45: Quarterly Sampling** Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Aidas Worthington (KLI) Crew #2: Justin Martos (Fugro), Jeff Polis (Fugro) Sampling Dates: Receiving water and land use sites: November 12th and 13th 2014 **Sampling Type:** Water Chemistry, Toxicity, and Salts | | | Constituents | | | | | | | |----------------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site
ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 04D_WOOD | 11-12-14 | X | | Х | Х | Х | Х | | | 04_WOOD | 11-12-14 | Х | Х | Х | Х | Х | | | | 04D_VENTURA | 11-13-14 | Х | | Х | | Х | Х | | | 01T_ODD2_DCH | 11-12-14 | Х | | Х | Х | Х | | | | 02_PCH | 11-12-14 | Х | | | Х | | | | | 03_UNIV | 11-12-14 | Х | Х | Х | Х | Х | | | | 9B_ADOLF | 11-12-14 | Х | Х | | Х | Х | | | | 9BD_ADOLF | 11-12-14 | Х | | Х | | Х | Х | | | 9A_HOWAR | 11-12-14 | Х | | | Х | | | | | 05D_SANT_VCWPD | 11-13-14 | Х | | Х | Х | Х | | | | 05_CENTR | 11-13-14 | Х | | | Х | | | | | 13_SB_HILL | 11-13-14 | Х | | | | Х | Х | | | 10_GATE | 11-12-14 | Х | Х | | Х | Х | | | | 12_PARK | 11-12-14 | Х | | | Х | | | | | 13_BELT | 11-12-14 | Х | | | Х | | | | | 06_SOMIS | 11-12-14 | Х | х | | Х | Х | | | | 07_HITCH | 11-12-14 | Х | Х | | Х | Х | | | | | | Constituents | | | | | | | |----------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 07_MADER | 11-12-14 | Х | | | Х | | | | | 07D_CTP | 11-13-14 | Х | | | | Х | Х | | | 07T_DC_H | 11-12-14 | Х | | | | Х | | | | OITEO NOT GAINI LED | | | | | | |---------------------|---|--|--|--|--| | Site ID | Reason for Omission | | | | | | 02D_BROOM | Pump stopped while on site. Could not be sampled. | | | | | | 06T_FC_BR | Site was dry. 11-13-14 @ 09:54 | | | | | | 9BD_GERRY | Site was dry. 11-12-14 @12:42, 15:10 and 11-13-14 @ 09:36 | | | | | | 07D_HITCH_LEVEE | Site was dry. 11-12-14 @ 9:25 | | | | | #### **DEVIATIONS FROM QAPP** | Site ID | Deviation | |----------------|---| | 02_PCH | Flow was not measured due to tidal influence. Site was sampled near low tide to maximize watershed water. | | 04D_WOOD | Intermediate HDPE sample bottle #07 (Boron) used to fill sample bottles. | | 04D_VENTURA | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 05D_SANT_VCWPD | Intermediate HDPE sample bottle #105 (Nitrate) used to fill sample bottles. | | 07D_CTP | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 07T_DC_H | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 9BD_ADOLF | Intermediate container (Ziploc® bag) used to fill sample bottles. | #### **FOLLOW UP ACTIONS** None #### **ADDITIONAL COMMENTS** QC items: Mercury blank water was unavailable for CCWTMP-45-ODD2-038. After discussions with LWA (M.Marson) about sampling it the next day it was determined best to leave it rest as an omission. Mercury Duplicate CCWTMP-45-ODD2-037 was taken in a Physis double bagged narrow mouth container not a wide mouth like the sample taken in bottle number 36. | Prepared by: | Greg Cotten, KLI | Date: December 4", 2014 | | |--------------|---------------------|--|--| | Reviewed by: | Amy Howk, KLI | Date: December 17 th , 2014 | | | Approved by: | Michael Marson, LWA | Date: January 7 th , 2015 | | # **Event 45: Mugu Lagoon Water** **Sampling Crew:** MBC Applied Environmental Sciences: James Nuñez, D.J. Schuessler **Sampling Date:** 12 November 2014 **Sampling Type:** Water Chemistry SITES SAMPLED | | | Constituents | | | | | | | | | |--|---|--------------|-----|-----|---|----------------|-----------------|--|--|--| | Site ID | General
Water
Quality
Parameters | тос | DOC | TSS | PCBs, OP, OC,
and Pyrethroid
Pesticides | Nutrients | Metals
w/ Hg | | | | | 01_BPT_14
Central Western
Arm | X | | X | X | | | X | | | | | 01_BPT_15
Central Lagoon | X | | X | X | | | X | | | | | 01_BPT_3
Eastern Arm | X | | X | X | | | X | | | | | 01_BPT_6
East Western
Arm | X | | X | X | | | X | | | | | 01_RR_BR
Ronald Reagan
Bridge | X | | X | X | X | X ¹ | X | | | | | 01_SG_74
Central Lagoon
S. of Drain #7 | X | | X | X | | | X | | | | ^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P. #### SITES NOT SAMPLED None #### **DEVIATIONS FROM QAPP** Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet. #### **NOTE** A floodgate to a side channel about 200 yards upstream of the 01_RR_BR sampling location was opened while the MBC field crew was conducting the survey. Water from the side channel was observed flowing into Calleguas Creek and downstream toward 01_RR_BR the sampling location, although the water from the side channel probably did not reach the station by the time the sampling was completed. ### **FOLLOW UP ACTIONS** | Prepared by: | David Vilas, MBC | Submittal Date: | 14 November 2014 | |--------------|---------------------|-----------------|------------------| | Approved by: | Michael Marson, LWA | Submittal Date: | 07 January 2015 | ## Event 46: Wet Weather Sampling Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Aidas Worthington (KLI) Crew #2: Amy Howk (KLI), Jon Toal (KLI) Crew #3: Justin Martos (Fugro), Tom Cromwell (Fugro) Crew #4: Tim Nicely (Fugro), Jeff Polis (Fugro) Sampling Dates: Receiving water and land use sites - December 2nd, 2014 **Sampling Type:** Stormwater Chemistry, Toxicity, and Salts | | | Constituents | | | | | | | |----------------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 04D_WOOD | 12-2-14 | Χ | | X | X | Х | Х | | | 04_WOOD | 12-2-14 | X | X | Х | Х | Х | Х | | | 04D_VENTURA | 12-2-14 | X | | Х | | Х | Х | | | 01T_ODD2_DCH | 12-2-14 | Х | | Х | Х | Х | | | | 03_UNIV | 12-2-14 | Х | х | Х | Х | Х | Х | | | 9B_BARON | 12-2-14 | Х | | | | | Х | | | 9B_ADOLF | 12-2-14 | Х | х | | Х | Х | | | | 9BD_ADOLF | 12-2-14 | Х | | Х | | Х | Х | | | 9BD_GERRY | 12-2-14 | Х | | Х | Х | Х | Х | | | 9A_HOWAR | 12-2-14 | Х | | | | | Х | | | 05D_SANT_VCWPD | 12-2-14 | Х | | Х | Х | Х | | | | 05_CENTR | 12-2-14 | Х | | | Х | | | | | 13_SB_HILL | 12-2-14 | Х | | | | Х | Х | | | 10_GATE | 12-2-14 | Х | х | | Х | Х | | | | 13_BELT | 12-2-14 | Х | х | | | Х | | | | 06T_FC_BR | 12-2-14 | Х | | | Х | Х | | | | | | Constituents | | | | | | |------------------|----------------|-----------------------|----------|--------|-----------|--|-------| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | 06_SOMIS | 12-2-14 | Х | Х | | X | X | | | 07D_HITCH_LEVEE2 | 12-2-14 | Х | | | Х | Х | Х | | 07_HITCH | 12-2-14 | Х | Х | | Х | Х | | | 07_MADER | 12-2-14 | Х | | | Х | | | | 07D_CTP | 12-2-14 | Х | | | | Х | Х | | 07T_DC_H | 12-2-14 | Х | | | | Х | | | 07_TIERRA | 12-2-14 | Х | | | | | Х | | 0.1.20 1.01 0.1 222 | | | | | | |---------------------|---------------------|--|--|--|--| | Site ID | Reason for Omission | | | | | | 02D_BROOM | Site was dry | | | | | #### **DEVIATIONS FROM QAPP** | Site ID | Deviation | |----------------|---| | 9A_HOWAR | Intermediate container (bucket) used to fill sample bottles. | | 05D_SANT_VCWPD | Intermediate container (bucket) used to fill sample bottles. | | 06_SOMIS | Intermediate container (bucket & bottle 78) used to fill sample bottles. | | 9BD_ADOLF | Intermediate container (bottle #123 & bottle #124) used to fill sample bottles. | #### **FOLLOW UP ACTIONS** None #### **ADDITIONAL COMMENTS** When Turbidity exceeded the measuring capabilities of the field meter (>1000 NTU) then additional Turbidity analysis was requested of Physis Laboratory. The TSS sample was to be used for this analysis and these sites include: 05D_SANT_VCWPD, 05_CENTR, 06T_FC_BR, 06 SOMIS, 9BD GERRY, 04 WOOD, and 01T ODD2 DCH. Turbidity calibration issue with meter 2692 and 3760: Team 2: 9BD_GERRY, 10_GATE, 13_BELT, 13_SB_HILL and 9A_HOWAR had an additional grab taken in a lab cleaned 250 mL HDPE container for Turbidity analysis within 7 hours with meter # 3755. There was a suspected issue with our 100 NTU calibration solution but not 0 or 1000 NTU. 3755 accepted both 0 and 1000 NTU but was not validated in pre-sampling calibration. The meter passed post calibrations test of both 100 NTU (read 109 NTU) and 0.0 NTU (read 0.0 NTU) back in the lab the following day. Due to Turbidity calibration uncertainty in meter 3760, both 9B_ADOLF and 9BD_ADOLF were also analyzed by Physis Laboratory. The remaining samples from that meter far exceeded the meters ability and were done by the lab. Strangely, YSI Sonde 6800 AE would not accept a decimal level mS/cm conductivity calibration. Additional grabs were taken at 07_HITCH, 07D_HITCH_LEVEE2, 07D_CTP, 07_MADER, and 07T_DC_H in new Ziploc® bags and analyzed with meter 3755 which past pre-/post-event calibrations. These grab samples were analyzed within 8 hours. Due to high and dangerous flows, all flows are estimated except: 04D_WOOD, 9BD_GERRY, and 06T_FC_BR. When possible, tools were used to make measured estimates (e.g. bridges were used to take width estimates, laser measures and grab
poles for smaller width estimates, and grab poles for depth measurements when possible, etc). | Prepared by: | Greg Cotten, KLI | Date: January 27, 2015 | |--------------|-----------------------|------------------------| | Reviewed by: | Amy Howk, KLI | Date: January 30, 2015 | | Approved by: | Michael R Marson, LWA | Date: February 2, 2015 | ## Event 47: Wet Weather Sampling Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Dani Walker (KLI) Crew #2: Amy Howk (KLI), Aidas Worthington (KLI) Crew #3: Justin Martos (Fugro), Jeff Polis (Fugro) Crew #4 Tim Nicely (Fugro), Tom Cromwell (Fugro) Sampling Dates: Receiving water and land use sites: December 12th, 2014 **Sampling Type:** Water Chemistry, Toxicity, and Salts | | | Constituents | | | | | | | |----------------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 04D_WOOD | 12-12-14 | X | | Х | X | Х | Х | | | 04_WOOD | 12-12-14 | X | Х | Х | X | Х | Х | | | 04D_VENTURA | 12-12-14 | X | | Х | | Х | Х | | | 01T_ODD2_DCH | 12-12-14 | X | | Х | Х | Х | | | | 02D_BROOM | 12-12-14 | Х | | Х | Х | Х | | | | 03_UNIV | 12-12-14 | Х | Х | Х | Х | Х | Х | | | 9B_BARON | 12-12-14 | Х | | | | | Х | | | 9B_ADOLF | 12-12-14 | Х | Х | | Х | Х | | | | 9BD_ADOLF | 12-12-14 | Х | | Х | | Х | Х | | | 9BD_GERRY | 12-12-14 | Х | | Х | Х | Х | Х | | | 9A_HOWAR | 12-12-14 | Х | | | | | Х | | | 05D_SANT_VCWPD | 12-12-14 | Х | | Х | Х | Х | | | | 05_CENTR | 12-12-14 | Х | | | Х | | | | | 13_SB_HILL | 12-12-14 | Х | | | | Х | Х | | | 10_GATE | 12-12-14 | Х | Х | | Х | Х | | | | 13_BELT | 12-12-14 | Х | Х | | | Х | | | | | | Constituents | | | | | | |-------------------|----------------|-----------------------|----------|--------|-----------|--|-------| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | 06T_FC_BR | 12-12-14 | X | | | X | X | | | 06_SOMIS | 12-12-14 | Х | х | | Х | Х | | | 07D_HITCH_LEVEE_2 | 12-12-14 | Х | | | Х | Х | Х | | 07_HITCH | 12-12-14 | Х | Х | | Х | Х | | | 07_MADER | 12-12-14 | Х | | | Х | | | | 07D_CTP | 12-12-14 | X | | | | Х | Х | | 07T_DC_H | 12-12-14 | Х | | | | Х | | | 07_TIERRA | 12-12-14 | X | | | | | Х | | Site ID | Reason for Omission | |---------|------------------------| | N/A | All sites were sampled | #### **DEVIATIONS FROM QAPP** | Site ID | Deviation | |----------|---| | 06_SOMIS | A bucket was used as an intermediate container to collect toxicity. The bucket was wiped down with a gloved hand and triple rinsed with site water before using it to collect sample. | #### **ADDITIONAL COMMENTS** #### Field meter calibration issues: Team 1 water quality sonde had a conductivity glitch that wouldn't accept a decimal level accuracy and therefore the accuracy of that probe was unacceptable. Conductivity for this team was made from grabs with meter # 2692 on the same day within 7 hours of collection. Team 2 turbidity sensor wouldn't accept calibration. Turbidity for this meter was analyzed by meter 3755 from grabs within 6.5 hours. Team 4 meter would not accurately calibrate to a 12,880 so it could not measure a large range of conductivities. It did however exhibit precision during the calibration procedures and therefore was calibrated to 0.0 and 1413. Because all site conductivity levels for this meter were found between 0 - 1413 uS/cm and the meter pasted post calibration check with great accuracy, I feel it's reasonable to accept the field measurements taken with this meter. Accurate flow measurements were taken at 9BD_GERRY, 07T_DC_H, 07D_HITCH_LEVEE_2, 04D_VENTURA, and 04D_WOOD but because of safety and ability concerns, all other flows for this event were measured estimates. Measured estimates means tools were used to make the estimates and actual measurements were made when possible but there was at least one component of the flow measurement that necessitates these flow be considered estimates. **Turbidity readings** that exceeded the meters ability to accurately measure (>1000 NTU) it was requested of Physis Laboratory to perform a turbidity analysis on the TSS sample. #### **FOLLOW UP ACTIONS** | Prepared by: | Greg Cotten, KLI | Date: | February 20, 2015 | |--------------|------------------------|-------|-------------------| | Reviewed by: | Amy Howk, KLI | Date: | February 23, 2015 | | Approved by: | Michael R. Marson, LWA | Date: | February 24, 2015 | ## Event 48: Quarterly Sampling **Sampling Crews:** Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Amy Howk (KLI) Crew #2: Tim Nicely (Fugro), Luke Budny (Fugro) Sampling Dates: Receiving water and land use sites: February 3rd and 4th 2015 Sampling Type: Water Chemistry, Toxicity, and Salts | | | Constituents | | | | | | |----------------|----------------|-----------------------|----------|--------|-----------|--|-------| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | 04D_WOOD | 2/4/15 | Х | | Х | Х | Х | Х | | 04_WOOD | 2/4/15 | Х | Х | Х | Х | Х | | | 04D_VENTURA | 2/3/15 | Х | | Х | | Х | Х | | 01T_ODD2_DCH | 2/3/15 | Х | | Х | Х | Х | | | 02_PCH | 2/3/15 | Х | | | Х | | | | 03_UNIV | 2/4/15 | Х | Х | Х | Х | Х | | | 9B_ADOLF | 2/4/15 | Х | Х | | Х | Х | | | 9BD_ADOLF | 2/3/15 | Х | | Х | | Х | Х | | 9A_HOWAR | 2/3/15 | Х | | | Х | | | | 05D_SANT_VCWPD | 2/3/15 | Х | | Х | Х | Х | | | 05_CENTR | 2/3/15 | Х | | | Х | | | | 13_SB_HILL | 2/3/15 | Х | | | | Х | Х | | 10_GATE | 2/3/15 | Х | | | Х | | | | 12_PARK | 2/3/15 | Х | | | Х | | | | 13_BELT | 2/4/15 | Х | Х | | Х | Х | | | 06T_FC_BR | 2/3/15 | Х | | | Х | Х | | | 06_SOMIS | 2/4/15 | Х | Х | | Х | Х | | | | | Constituents | | | | | | | |----------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 07_HITCH | 2/4/15 | Х | X | | Х | X | | | | 07_MADER | 2/3/15 | Х | | | Х | | | | | 07D_CTP | 2/3/15 | Х | | | | Х | Х | | | 07T_DC_H | 2/3/15 | Х | | | | Х | | | | Site ID | Reason for Omission | |-------------------|--| | 02D_BROOM | Site was dry 2-4-15 @ 11:40. | | 9BD_GERRY | Site was dry 2-3-15 @ 14:00, 15:54 and 2-4-15 @ 11:00, 12:10 | | 07D_HITCH_LEVEE_2 | Site was dry 2-4-15 @ 08:15, 09:45 | ## **DEVIATIONS FROM QAPP** | Site ID | Deviation | |-------------|--| | 04D_WOOD | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 04D_VENTURA | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 07D_CTP | Intermediate container (Ziploc® bag) used to fill sample bottles. | | 06_SOMIS | Intermediate HDPE sample bottle #112 (TSS) used to fill Toxicity samples only. | | 07_HITCH | Intermediate HDPE sample bottle #125 (TSS) used to fill Toxicity samples only. | | 9BD_ADOLF | Intermediate container (Ziploc® bag) used to fill sample bottles. | ## **FOLLOW UP ACTIONS** #### **ADDITIONAL COMMENTS** The field water quality meter used by Team 2, meter #3760, failed the post-calibration for pH. Initial calibration was valid with a confirmation check of 8.04; however post-calibration was 8.44 for pH 8.0. The same meter measured pH 7.45 for pH 7.0 during the post-calibration check. Turbidity for Team 1 was measured using a HACH 2100 Q portable turbidimeter. The meter was calibrated prior to sampling and post-calibrated. Samples were taken and read immediately with no waiting time. | Prepared by: | Amy Howk, KLI | Date: | February 19 th , 2015 | | |--------------|------------------------|-------|----------------------------------|--| | Reviewed by: | Dani Walker, KLI | Date: | February 23 rd , 2015 | | | Approved by: | Michael R. Marson, LWA | Date: | February 25 th , 2015 | | # **Event 48: Mugu Lagoon Water** **Sampling Crew:** MBC Applied Environmental Sciences: James Nuñez & D.J. Schuessler **Sampling Date:** 5 February 2015 **Sampling Type:** Water Chemistry SITES SAMPLED | | Constituents | | | | | | | |--|---|-----|-----|-----|---|-----------|-----------------| | Site ID | General
Water
Quality
Parameters | тос | DOC | TSS | PCBs, OP, OC,
and Pyrethroid
Pesticides | Nutrients | Metals
w/ Hg | | 01_BPT_14
Central Western
Arm | X | | X | X | | | X | | 01_BPT_15
Central Lagoon | X | | X | X | | | X | | 01_BPT_3
Eastern Arm | X | | X | X | | | X | | 1_BPT_6
East Western
Arm | X | | X | X | | | X | | 01_RR_BR
Ronald Reagan
Bridge | X | | X | X | X | X^1 | X | | 01_SG_74
Central Lagoon
S. of Drain #7 | X | | X | X | | | X | ^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P. #### SITES NOT SAMPLED None #### **DEVIATIONS FROM QAPP** Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are
provided on the field log sheet. At Station 01_BPT_15 water quality field data recorded for "1-m depth" was sampled at 0.9 m due to low tidal level. ## FOLLOW UP ACTIONS | Prepared by: | David Vilas, MBC | Submittal Date: | 6 February 2015 | |--------------|---------------------|-----------------|-----------------| | Approved by: | Michael Marson, LWA | Submittal Date: | 18 March 2015 | ## **Event 49: Quarterly Sampling** Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro Crew #1: Greg Cotten (KLI), Amy Howk (KLI) Crew #2: Tim Nicely (Fugro), Lucas Budny (Fugro) Sampling Dates: Receiving water and land use sites: May 5th and 6th, 2015 Sampling Type: Water Chemistry, Toxicity, and Salts | | | Constituents | | | | | | | |----------------|----------------|-----------------------|----------|--------|-----------|--|-------|--| | Site ID | Sample
Date | General
Parameters | Toxicity | Metals | Nutrients | PCBs, OP,
OC, and
Pyrethroid
Pesticides | Salts | | | 04D_WOOD | 05-05-15 | X | | Х | X | Х | Х | | | 04_WOOD | 05-06-15 | X | X | X | Х | Х | | | | 04D_VENTURA | 05-05-15 | X | | X | | Х | Х | | | 01T_ODD2_DCH | 05-06-15 | X | | X | X | Х | | | | 02_PCH | 05-06-15 | X | | | Х | | | | | 03_UNIV | 05-06-15 | X | X | Х | Х | Х | | | | 9B_ADOLF | 05-06-15 | X | X | | Х | Х | | | | 9BD_ADOLF | 05-05-15 | X | | Х | | Х | Х | | | 9A_HOWAR | 05-05-15 | X | | | Х | | | | | 05D_SANT_VCWPD | 05-05-15 | X | | X | Х | Х | | | | 05_CENTR | 05-05-15 | X | | | Х | | | | | 13_SB_HILL | 05-05-15 | X | | | | Х | Х | | | 10_GATE | 05-06-15 | X | X | | Х | Х | | | | 12_PARK | 05-05-15 | Х | | | Х | | | | | 13_BELT | 05-05-15 | Х | | | Х | | | | | 07_HITCH | 05-06-15 | Х | Х | | Х | Х | | | | 07_MADER | 05-05-15 | X | | | Х | | | | | | | Constituents | | | | | | | | |----------|----------------|--------------|--|--------|---|---|-------|--|--| | Site ID | Sample
Date | | | Metals | Nutrients PCBs, OI OC, and Pyrethro Pesticide | | Salts | | | | 07D_CTP | 05-05-15 | Х | | | | X | Х | | | | 07T_DC_H | 05-05-15 | Х | | | | Х | | | | | Site ID | Reason for Omission | |------------------|---------------------| | 02D_BROOM | Site was dry. | | 06T_FC_BR | Site was dry. | | 07D_HITCH_LEVEE2 | Site was dry. | | 9BD_GERRY | Site was dry. | | 06_SOMIS | Site was dry. | ### **DEVIATIONS FROM QAPP** | Site ID | Deviation | |----------------|--| | 02_PCH | Flow was taken in spite of tidal influence. | | 04_WOOD | The conductivity at the site (3,950 uS/cm) was greater than the accepted range for the designated test species (<i>Ceriodaphnia dubia</i>). The QAPP requires the use of <i>Americamysis bahia</i> . However, <i>Hylella azteca</i> is identified by SWAMP as an appropriate water test species when conductivity is greater than 3,000 us/cm and is currently utilized by the Ventura County Irrigated Lands Group which conducts monitoring in the watershed. To maintain consistency with an existing watershed program, the toxicity testing lab (Pacific EcoRisk) utilized <i>Hylella azteca</i> in place of <i>Americamysis bahia</i> . | | 04D_VENTURA | Intermediate container (new Ziploc® bag) was used to fill sample bottles. The bag was triple rinsed before sampling. | | 07D_CTP | Intermediate container (new Ziploc® bag) was used to fill sample bottles. The bag was triple rinsed before sampling. | | 07T_DC_H | Intermediate container (new Ziploc® bag) was used to fill sample bottles. The bag was triple rinsed before sampling. | | 9BD_ADOLF | Intermediate container (new Ziploc® bag) was used to fill sample bottles. The bag was triple rinsed before sampling. | | 05D_SANT_VCWPD | Intermediate container (new Ziploc® bag) was used to fill sample bottles. The bag was triple rinsed before sampling. | ### **FOLLOW UP ACTIONS** None ### **ADDITIONAL COMMENTS** | Prepared by: | Greg Cotten, KLI | Date: May 21, 2015 | |--------------|----------------------|---------------------| | Reviewed by: | Danielle Walker, KLI | Date: May 21, 2015 | | Approved by: | Michael Marson, LWA | Date: June 11, 2015 | ## **Event 49: Mugu Lagoon Water** **Sampling Crew:** MBC Applied Environmental Sciences: Wayne Dossett, D.J. Schuessler **Sampling Date:** 4 May 2015 **Sampling Type:** Water Chemistry #### SITES SAMPLED | | Constituents | | | | | | | | |--|---|-----|-----|-----|---|-----------|-----------------|--| | Site ID | General
Water
Quality
Parameters | тос | DOC | TSS | PCBs, OP, OC,
and Pyrethroid
Pesticides | Nutrients | Metals
w/ Hg | | | 01_BPT_14
Central Western
Arm | X | | X | X | | | X | | | 01_BPT_15
Central Lagoon | X | | X | X | | | X | | | 01_BPT_3
Eastern Arm | X | | X | X | | | X | | | 1_BPT_6
East Western
Arm | X | | X | X | | | X | | | 01_RR_BR
Ronald Reagan
Bridge | X | | X | X | X | X^1 | X | | | 01_SG_74
Central Lagoon
S. of Drain #7 | X | | X | X | | | X | | ^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P. #### SITES NOT SAMPLED None #### **DEVIATIONS FROM QAPP** Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet. ## FOLLOW UP ACTIONS | Prepared by: | David Vilas, MBC | Submittal Date: | 6 May 2015 | |--------------|---------------------|-----------------|---------------| | Approved by: | Michael Marson, LWA | Submittal Date: | July 16, 2015 | ## **Event 49: Mugu Lagoon Tissue** **Sampling Crew:** MBC Applied Environmental Sciences: James Nunez, Wayne Dossett, D.J. Schuessler **Sampling Date:** 18 May 2015 **Sampling Type:** Mugu Lagoon Tissue Chemistry #### SITES SAMPLED | 624. ID | Constituents | | | | | | | | |-------------------------------------|--------------|---------------|--------------|--------|----------|------------|--|--| | Site ID | PCBs | OC Pesticides | Chlorpyrifos | Metals | % Lipids | % Moisture | | | | 01_Central
Lagoon | X | X | X | X | X | X | | | | Mussel Tissue | | | | | | | | | | 01_Central
Lagoon | X | X | X | X | X | X | | | | Bait Fish Tissue | | | | | | | | | | 01_Central
Lagoon | X | X | X | X | X | X | | | | Sport Fish Tissue | | | | | | | | | | 01_Western Arm | X | X | X | X | X | X | | | | Mussel Tissue | | | | | | | | | | 01_Western Arm | X | X | X | X | X | X | | | | Bait Fish Tissue | Λ | Λ | Λ | Λ | Λ | Λ | | | | 01_Western Arm
Sport Fish Tissue | X | X | X | X | X | X | | | #### SITES NOT SAMPLED None **DEVIATIONS FROM QAPP** None FOLLOW UP ACTIONS None Prepared by: David Vilas, MBC Submittal Date: 20 May 2015 Approved by: Michael Marson, LWA Submittal Date: July 16, 2015 # Appendix B: # Calibration Event Summary for Salts TMDL The following section provides a summary of the monitoring events not covered by our quarterly or wet weather monitoring completed during the seventh year of monitoring. The continuous sensor sites (03_UNIV, 04_WOOD, 9A_HOWAR, 9B_BARON, & 07_TIERRA) were visited monthly for calibration checks and flow measurements. #### SUMMARY OF MONTHLY EVENTS Monthly sampling events included only measuring electrical conductivity (EC), temperature, and chloride (no grab samples were required during these visits). EC and temperature were measured using a Hach sensION5 meter and chloride was measured with Hach Quantab titration strips. The following section details each monthly event. Table 1. Monthly sensor site visits | Month | Site ID | Date Visited | EC | Chloride | Discharge | |----------------|-----------|--------------|----|----------|-----------| | July 2014 | 04_WOOD | 7/11/2014 | Х | Х | Х | | | 03_UNIV | 7/10/2014 | X | X | X | | | 07_TIERRA | 7/10/2014 | Χ | X | X | | | 9A_HOWAR | 7/10/2014 | Χ | X | Χ | | | 9B_BARON | 7/10/2014 | X | X | X | | | 04_WOOD | 7/16/2014 | Χ | X | X | | | 9A_HOWAR | 7/25/2014 | | | X | | | 04_WOOD | 7/25/2014 | | | Х | | August 2014 | 04_WOOD | 08/06/2014 | Х | Х | Х | | | 03_UNIV | 08/06/2014 | X | X | X | | | 07_TIERRA | 08/06/2014 | Χ | X | Х | | | 9A_HOWAR | 08/06/2014 | Χ | X | X | | | 9B_BARON | 08/06/2014 | Χ | X | X | | September 2014 | 04_WOOD | 09/04/2014 | Х | Х | Х | | | 03_UNIV | 09/04/2014 | X | X | Х | | | 07_TIERRA | 09/04/2014 | X | X | Х | | | 9A_HOWAR | 09/04/2014 | X | X | Х | | | 9B_BARON | 09/04/2014 | X | X | Х | | October 2014 | 04_WOOD | 10/02/2014 | Х | Х | Х | | | 03_UNIV | 10/02/2014 | X | X | Х | | | 07_TIERRA | 10/02/2014 | X | X | Х | | | 9A_HOWAR | 10/02/2014 | X | X | Х | | | 9B_BARON | 10/02/2014 | X | X | Х | | | 04_WOOD | 10/30/2014 | X | X | Х | | November 2014 | 04_WOOD | 11/06/2014 | Х | Х | Х | | | 03_UNIV | 11/06/2014 | X | X | Х | | | 07_TIERRA | 11/06/2014 | X | Х | X | | | 9A_HOWAR | 11/06/2014 | X | X | Х | | | 9B_BARON | 11/06/2014 | X | X | Х | | December 2014 | 04_WOOD | 12/02/2014 | Х | | Х | | - Storm 1 | 03_UNIV | 12/02/2014 | X | | Х | | | 07_TIERRA | 12/02/2014 | X | | Х | | | 9A_HOWAR | 12/02/2014 | X | | Х | | | 9B_BARON |
12/02/2014 | X | | Х | | Month | Site ID | Date Visited | EC | Chloride | Discharge | |------------------------------|-----------|--------------|----|----------|-----------| | December 2014 | 04_WOOD | 12/05/2014 | Х | Х | Х | | Post storm | 03_UNIV | 12/05/2014 | X | X | Χ | | | 07_TIERRA | 12/05/2014 | X | X | Χ | | | 9A_HOWAR | 12/05/2014 | X | X | Χ | | | 9B_BARON | 12/05/2014 | X | X | Χ | | | 03_UNIV | 12/08/2014 | X | X | | | December 2014 | 04_WOOD | 12/12/2014 | Х | | Х | | - Storm 2 | 03_UNIV | 12/12/2014 | X | | Χ | | | 07_TIERRA | 12/12/2014 | X | | Χ | | | 9A_HOWAR | 12/12/2014 | X | | Χ | | | 9B_BARON | 12/12/2014 | X | | Χ | | December 2014 | 03_UNIV | 12/15/2014 | Х | X | | | Post storm | 9A_HOWAR | 12/17/2014 | X | X | Χ | | | 03_UNIV | 12/17/2014 | X | X | | | | 04_WOOD | 12/18/2014 | X | X | X | | | 9B_BARON | 12/18/2014 | X | X | Χ | | | 9A_HOWAR | 12/18/2014 | X | X | X | | | 07_TIERRA | 12/19/2014 | X | X | Χ | | January 2015 | 04_WOOD | 01/14/2015 | Х | Х | Х | | | 03_UNIV | 01/14/2015 | X | X | X | | | 07_TIERRA | 01/14/2015 | X | X | Χ | | | 9A_HOWAR | 01/14/2015 | X | X | Χ | | | 9B_BARON | 01/14/2015 | X | X | Χ | | February 2015 | 04_WOOD | 02/04/2015 | Х | Х | Х | | | 03_UNIV | 02/04/2015 | X | X | Χ | | | 07_TIERRA | 02/04/2015 | X | X | Χ | | | 9A_HOWAR | 02/04/2015 | X | X | Χ | | | 9B_BARON | 02/04/2015 | X | X | Χ | | March 2015 | 04_WOOD | 03/04/2015 | Х | Х | Х | | | 03_UNIV | 03/04/2015 | X | X | Χ | | | 07_TIERRA | 03/04/2015 | X | X | X | | | 9A_HOWAR | 03/04/2015 | X | X | X | | | 9B_BARON | 03/04/2015 | X | X | X | | | 04_WOOD | 03/17/2015 | X | X | X | | | 04_WOOD | 03/25/2015 | X | X | X | | Month | Site ID | Date Visited | EC | Chloride | Discharge | |------------|-----------|--------------|----|----------|-----------| | April 2015 | 04_WOOD | 04/02/2015 | Х | Х | Х | | | 03_UNIV | 04/02/2015 | X | X | Χ | | | 07_TIERRA | 04/02/2015 | X | X | Χ | | | 9A_HOWAR | 04/02/2015 | X | X | Χ | | | 9B_BARON | 04/02/2015 | X | X | Χ | | | 9A_HOWAR | 04/29/2015 | X | X | | | | 07_TIERRA | 04/29/2015 | X | X | | | May 2015 | 04_WOOD | 05/07/2015 | Х | Х | Х | | | 03_UNIV | 05/07/2015 | X | X | X | | | 07_TIERRA | 05/07/2015 | X | X | Χ | | | 9A_HOWAR | 05/07/2015 | X | X | Χ | | | 9B_BARON | 05/07/2015 | X | X | Χ | | June 2015 | 04_WOOD | 06/09/2015 | Х | Х | Х | | | 03_UNIV | 06/09/2015 | X | X | Χ | | | 07_TIERRA | 06/09/2015 | X | X | Χ | | | 9A_HOWAR | 06/09/2015 | X | X | Χ | | | 9B_BARON | 06/09/2015 | Х | Х | Χ | | | 04_WOOD | 06/24/2015 | X | X | Χ | | | 9A_HOWAR | 06/24/2015 | X | X | Χ | | | 04_WOOD | 06/30/2015 | Х | X | Χ | | | 03_UNIV | 06/30/2015 | X | X | X | | | 07_TIERRA | 06/30/2015 | X | X | X | | | 9B_BARON | 06/30/2015 | Х | Χ | X | # Appendix C: Rating Curves and EC/Salt Relationships for Salts TMDL Compliance Sites for the July 2014-June 2015 Monitoring Year #### **RATING CURVES** Continuous water level time series data (5-min intervals) were converted to time series of flow estimates (cfs) using the USGS shift-adjusted rating curve method. The method establishes a base rating for a given date range. Over the date range that shares a base rating, this rating is then shifted, as necessary, for subsets of the data to account for small changes in the geometry of natural channels often caused by deposition, scouring, and vegetation. Rating curves for all sites took the form $Q = c^* (Lvl + a + S)^b$ where, ``` Q = discharge (cfs) ``` Lvl = water level or "stage", referenced to depth sensor elevation (cm) c = scaling coefficient a = coefficient accounting for the vertical difference between depth sensor elevation (stage = 0) and stage at zero discharge (cm) b = coefficient accounting for channel shape, natural channels fall between endpoints b=1.5 (square channel), and b=2.5 (triangular channel). S = stage shift, typically varies over time for natural channels (cm). Monthly manual measurements of discharge were performed at all sites and are used to establish base ratings and to determine the required "shifts" ("S" in the equation above) over time for the monitoring year. Base rating curve equations are provided in **Table 1**. Table 1. Rating Curves for Salts TMDL Compliance Sites for Monitoring Year July 2014-June 2015 | Site | Rating Curve | |------------------------|--------------------------------------| | 03_UNIV ^[a] | $Q = 0.32*(LvI - 30.5 + C)^{2.0}$ | | 04_WOOD | $Q = 0.015*(LvI - 5 + C)^{1.8}$ | | 07_TIERRA | $Q = 0.0185^*(LvI - 21.5 + C)^{2.0}$ | | 9A_HOWAR | $Q = 0.021*(LvI - 6.0 + C)^{2.0}$ | | 9B_BARON | $Q = 0.044*(LvI + 0 + C)^{1.65}$ | [a] A new base rating curve was developed for 2014-2015 water year and a single relationship is appropriate for both low and high flow conditions (previously, the rating curve was split depending on the water level) ### **EC/SALT RELATIONSHIPS** Site-specific, linear relationships between specific conductivity (EC) and salt constituents were used to convert continuous EC sensor data to estimate salt concentrations. Surrogate relationships were derived from field data for EC and salts (grab samples for TDS, sulfate, chloride, or boron from quarterly dry plus wet events) using linear regression, in the following form: [Ion] = A*EC + B, where, [Ion] = concentration of TDS, sulfate, chloride, or boron (mg/L) A = slope $EC = specific conductivity (\mu S/cm)$ B = y-intercept Two scenarios were evaluated to determine whether EC vs. salt relationships at the Salts TMDL compliance sites had significantly changed from those obtained during a one-year pilot study in 2011, which were subsequently used to prepare salt concentration time series for the 2012/2013 and 2013/2014 monitoring years. The first scenario considered a change in the surrogate relationship after June 2012, a date that separates the initial feasibility study and the start of compliance monitoring in late summer 2012. The second scenario considered a change in the surrogate relationship after February 2014, a date selected to reflect drought conditions and a change in the imported water supply source from 100% State Water Project (SWP) water to approximately 80% SWP water and 20% Colorado River water. Analysis of covariance (ANCOVA) is a statistical tool for identifying cases where surrogate relationships change; however, further analysis is required to make a decision if the change is both supported by data and is significant enough trigger an update to surrogate relationships. ANCOVA analyses were run to identify cases where there is a statistical possibility that surrogate relationships may have shifted over time, based on one or both of the scenarios described above. Based on this analysis, eight surrogate models were updated for the 2014-2015 water year. Two of the updated surrogate relationships are now based on field data collected starting with the beginning of compliance monitoring in late summer 2012 (EC/B at 07_TIERRA, EC/Cl at 9B_BARON). The other six of the updated surrogate relationships are now based on field data collected starting in February 2014. Relationship parameters and field data date ranges for all surrogate relationships used to process the 2014/2015 EC sensor data are reported in **Table 2**. The surrogate relationships are illustrated in figures following **Table 2**. Table 2. Parameters for surrogate relationships used to derive salt concentrations from EC sensor data for monitoring year July 2014-June 2015. Date ranges are for the field data that were used to construct the relationship. | | | TDS | CI | SO4 | В | |-----------|------------|---|--|---|---| | 03_UNIV | Α | 0.6220 | 0.1389 | 0.1504 | | | _ | В | -0.2576 | -13.7568 | 14.7609 | | | | R2 | 0.9814 | 0.9936 | 0.9816 | | | | Count | 49 | 9 | 9 | | | | Date Range | 1/31/2011 –
6/30/2015 ^[a] | 2/28/2014- | -6/30/2015 ^[a] | | | 04_WOOD | А | 0.9203 | 0.05086 | 0.4890 | 0.0005 | | | В | -197.3 | -6.8498 | -104.5639 | -0.0930 | | | R2 | 0.9837 | 0.9896 | 0.9926 | 0.8731 | | | Count | 48 | 8 | 8 | 48 | | | Date Range | 1/31/2011 –
6/30/2015 ^[a] | 2/28/2014- | -6/30/2015 ^[a] | 1/31/2011 –
6/30/2015 ^[a] | | 07_TIERRA | А | 0.7092 | 0.1081 | 0.2763 | 0.0004 | | | В | -61.26 | -11.9364 | -39.7200 | -0.0406 | | | R2 | 0.9816 | 0.9940 | 0.9722 | 0.9735 | | | Count | 37 | 8 | 37 | 16 | | | Date Range | 1/31/2011 –
6/30/2015 ^[a] | 2/28/2014-
6/30/2015 ^[a] | 1/31/2011 –
6/30/2015 ^[a] | 8/28/2012-
6/30/2015 ^[a] | | 9A_HOWAR | А | 0.6097 | 0.1380 | 0.1597 | | | | В | 1.5996 | -11.5017 | -9.8701 | | | | R2 | 0.9854 | 0.9900 | 0.9499 | | | | Count | 38 | 8 | 37 | | | | Date Range | 1/31/2011 –
6/30/2015 ^[a] | 2/28/2014-
6/30/2015 ^[a] | 1/31/2011 –
6/30/2015 ^[a] | | | 9B_BARON | А | 0.6010 | 0.1456 | 0.1533 | | | | В | -5.5732 | -14.3760 | -6.0782 | | | | R2 | 0.9715 | 0.9885 | 0.9632 | | | | Count | 38 | 16 | 8 | | | | Date Range | 1/31/2011 –
6/30/2015 ^[a] | 8/28/2012-
6/30/2015 ^[a] | 2/28/2014-
6/30/2015 ^[a] | | [[]a] The final field grabs for the July 2014-June 2015 monitoring year were collected on 5/7/2015. # Appendix D: # Toxicity Testing and Toxicity Identification Evaluations (TIE) Summary #### **TOXICITY TESTING PROCEDURES** For the Calleguas Creek Watershed TMDL Compliance Monitoring Program (CCWTMP), toxicity testing at various locations is conducted to meet total maximum daily load (TMDL) requirements. The following is a brief summary of the procedures for the analytical methods used by the CCWTMP. Specific details concerning the standard operating procedures (SOPs) followed by field crews collecting applicable samples and laboratory analyses are found in the Quality Assurance Project Plan (QAPP). For the CCWTMP toxicity measures, standard test species were utilized for toxicity testing. *Ceriodaphnia dubia* was used for fresh water
aquatic toxicity testing and *Hyalella azteca* for the saline water aquatic toxicity testing and bulk sediment and porewater toxicity testing. *Hyalella azteca* was used to conduct aquatic toxicity testing if sample salinity exceeded 1.5 part per thousand (PPT) but was less than 15 PPT. All test species are standard United States Environmental Protection Agency (USEPA) test species and considered the most applicable for the various types of pollutants impacting the watershed, and all analytical testing procedures were conducted using standard USEPA methods. The results of each toxicity test are used to trigger further investigations to determine the cause of observed laboratory toxicity if necessary per the QAPP. If testing indicates the presence of significant toxicity in the sample, toxicity identification evaluations (TIEs) procedures are initiated to investigate the cause of toxicity. For the purpose of triggering TIE procedures, significant toxicity is defined as at least 50% mortality. The 50% mortality threshold is consistent with the approach recommended in guidance published by USEPA for conducting TIEs (USEPA, 1996), which recommends a minimum threshold of 50% mortality because the probability of completing a successful TIE decreases rapidly for samples with less than this level of toxicity. A component of the compliance requirement when significant toxicity is found is to initiate a targeted Phase 1 TIE and test to determine the general class of constituent (*i.e.*, non-polar organics) causing toxicity. The targeted TIE focuses on classes of constituents anticipated to be observed in drainages dominated by urban and agricultural discharges and those previously observed to cause toxicity. Phase 2 TIEs may also be utilized to identify specific constituents causing toxicity if warranted. TIE methods will generally adhere to USEPA procedures documented in conducting TIEs. ^{2,3,4,5} For samples exhibiting toxic effects consistent with _ ¹ United States Environmental Protection Agency (USEPA). 1996. Marine Toxicity Identification Evaluation. Phase I Guidance Document EPA/600/R-96/054. USEPA, Office of Research and Development, Washington, D.C. ² United States Environmental Protection Agency (USEPA). 1991. Methods for Aquatic Toxicity Identification Evaluations: Phase 1 Toxicity Characterization Procedures (Second Edition). EPA-600/6-91/003. USEPA, Environmental Research Laboratory, Duluth, MN. ³ United States Environmental Protection Agency (USEPA). 1992. Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents Phase 1. EPA/600/6-91/005. USEPA, Office of Research and Development, Washington, D.C. carbofuran, diazinon, or chlorpyrifos, TIE procedures follow those documented in Bailey *et al.* ⁶ To address toxicity of unknown causes in sediment (> 50% mortality), sediment porewater was extracted and a Phase 1 TIE was performed. In addition, a Phase 1 TIE was performed on bulk sediment. The decision to initiate TIE procedures on any sample, including samples exceeding the mortality threshold, as well as the focus and scope of TIE procedures, was determined by the Project Manager and toxicity laboratory staff. When deciding whether to initiate TIE procedures for a specific site and monitoring event, a number of factors were considered, including the level of toxicity, the magnitude of sample mortality and/or reburial levels as compared to lab control results, history of toxicity at the site, the species and endpoints exhibiting toxic effects, as well as the primary technical basis for triggering TIEs described above. A summary of the toxicity results and subsequent TIE actions, including the rationale for initiating TIE procedures for a specific sample are described below. ### **TOXICITY RESULTS SUMMARY** Freshwater sediment toxicity samples are collected annually during the first event of each monitoring year. In addition, sediment toxicity samples are collected every three years in Mugu Lagoon. As such, freshwater and lagoon sediment toxicity samples were collected during the first event of this monitoring year. Water column toxicity samples are collected at freshwater sites during each of the quarterly and wet weather events. Monitored sites include the following: - Sediment Toxicity (Freshwater Sites) - o 02_PCH - o 03 UNIV - o 04_WOOD - o 9A_HOWAR - Sediment Toxicity (Lagoon Sites) - o 01_BPT_3 - o 01 BPT 6 - o 01_BPT_14 - o 01 BPT 15 - o 01_BPT_74 ⁴ United States Environmental Protection Agency (USEPA). 1993a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fourth Edition. EPA/600/4-90/027F. USEPA, Office of Research and Development, Washington, D.C. ⁵ United States Environmental Protection Agency (USEPA). 1993b. Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA/600/R-02/080. USEPA, Office of Research and Development, Washington, D.C. ⁶ Bailey, H.C., DiGiorgio, C., Kroll, K., Miller, J.L., Hinton, D.E., Starrett, G. 1996. Development of Procedures for Identifying Pesticide Toxicity in Ambient Waters: Carbofuran, Diazinon, Chlorpyrifos. Environ. Tox. and Chem. V15, No. 6, 837-845. ### • Freshwater Water Column Toxicity - o 04 WOOD - o 03_UNIV - o 9B_ADOLF - o 06_SOMIS - o 07_HITCH - o 10_GATE (Toxicity Investigation site) - o 13_BELT (Toxicity Investigation site) Toxicity samples for sediment were collected at the freshwater and lagoon sites during dry weather Event 44. Water column toxicity testing was conducted during all four dry weather events (Events 44, 45, 48, and 49), and the wet weather events (Events 46 and 47). The following section describes the toxicity samples collected at each site for each event, the results of the tests, and a summary of applicable TIEs initiated per the requirements in the QAPP. ## **Event 44 Sediment Toxicity** Table 1. Freshwater Sediment Toxicity Event 44 - Hyalella azteca | Cita ID | ı | Hyalella azteca | | | austorius estua | rius | |-----------|------------------|-----------------|------|----------|-----------------|------| | Site ID | Survival | Growth | TIE? | Survival | Reburial | TIE? | | 02_PCH | No | No | No | | | | | 03_UNIV | Yes ¹ | No | No | | | | | 04_WOOD | Yes ² | Yes | No | | | | | 9A_HOWAR | No | No | No | | | | | 01_BPT_3 | | | | No | No | No | | 01_BPT_6 | | | | No | No | No | | 01_BPT_14 | | | | No | No | No | | 01_BPT_15 | | | | No | No | No | | 01_BPT_74 | | | | No | No | No | ^{1.} There was a greater than 50 percent reduction in *Hyalella azteca* survival. ^{2.} Although the reduction in the survival/growth response was statistically significant, there was a less than 20 percent reduction relative to the Control. ## **Event 44 Water Column Toxicity** Table 2. Freshwater Water Column Toxicity Event 39 - Ceriodaphnia dubia and Hyalella azteca | Site ID | (| Ceriodaphnia dubia | Hyalella | azteca | | |----------|-----------------|-----------------------|----------|----------|------| | Site ID | Survival | Survival Reproduction | | Survival | TIE? | | 03_UNIV | No ¹ | Yes | Yes | | | | 04_WOOD | | | | Yes | No | | 07_HITCH | No | Yes | No | | | | 9B_ADOLF | No | Yes | No | | | | 10_GATE | No | Yes | No | | | | 13_BELT | No | No | No | | | ^{1.} There was no statistically significant difference in survival between the control and the ambient water treatments; however, there was greater than 50 percent mortality in the 100 percent ambient water concentration. As such, a TIE was initiated. ### **Event 44 Toxicity and TIE Summary** - Freshwater sediment sites exhibited mortality at the 03_UNIV and 04_WOOD sites, but toxicity at the 04_WOOD site was not sufficient (mean percent survival <50 percent) for a TIE to be performed. - There were no instances of *Eohaustorius estuaries* toxicity in the lagoon sediments. - A TIE was initiated targeted for organics on the 03_UNIV freshwater sample. - There were no significant reductions in toxicity by any of the TIE treatments. As such, the TIE results did not indicate a specific cause of the toxicity. - A follow-up TIE with additional treatments was performed to aid in the identification of the toxicity cause. Toxicity was not observed in the baseline treatment indicating the toxicant may have undergone natural degradation or reduced bioavailability due to sorption. The lack of toxicity persistence suggests an organic compound as the cause of the toxicity. # **Event 45 Water Quality Toxicity** Table 3. Water Quality Toxicity Event 45 - Ceriodaphnia dubia and Hyalella azteca | Site ID | (| Ceriodaphnia dubia | Hyalella | azteca | | |----------|----------|--------------------|----------|----------|------| | Site ID | Survival | Reproduction | TIE? | Survival | TIE? | | 03_UNIV | No | No | No | | | | 04_WOOD | | | | Yes | No | | 06_SOMIS | No | Yes | No | | | | 07_HITCH | No | Yes | No | | | | 9B_ADOLF | No | No | No | | | | 10_GATE | No | Yes | No | | | # **Event 45 Toxicity and TIE Summary** - No significant reductions in survival were observed for *Ceriodaphnia dubia* at the five freshwater sample sites during the sampling event. - Significant reductions in reproduction were observed for *Ceriodaphnia dubia* at three of the five sites tested for this organism. - Significant survival toxicity was observed for *Hyalella azteca* at the 04_WOOD site. - No TIEs were performed on samples collected for this sampling event. ## **Event 46 Water Quality Toxicity** Table 4. Water Quality Toxicity Event 46 - Ceriodaphnia dubia | Site ID | Ceriodaphnia dubia | | | | | | | | |----------|--------------------|------|-----|--|--|--|--|--| | Site ib | Survival | TIE? | | | | | | | | 03_UNIV | Yes | Yes | Yes | | | | | | | 04_WOOD | Yes | Yes | No | | | | | | | 06_SOMIS | Yes | Yes | Yes | | | | | | | 07_HITCH | Yes | Yes | Yes | | | | | | | 9B_ADOLF | No | No | No | | | | | | | 10_GATE | No | No | No | | | | | | | 13_BELT | No |
No | No | | | | | | ## **Event 46 Toxicity and TIE Summary** - Significant mortality was observed for *Ceriodaphnia dubia* at 03_UNIV, 04_WOOD, 06_SOMIS, and 07_HITCH and TIEs were performed on samples collected from the 03_UNIV, 06_SOMIS, and 07_HITCH sites. - The TIE for the 03_UNIV sample indicated that compounds associated with suspended particulates are contributing to toxicity and that OP pesticides are also contributing to toxicity. - The TIE for the 06_SOMIS sample indicated that compounds associated with suspended particulates are contributing to toxicity and that non-polar organic compounds are also contributing to toxicity. - The TIE for the 07_HITCH sample indicated compounds associated with suspended particulates are contributing to toxicity and that OP pesticides are also contributing to toxicity. # **Event 47 Water Quality Toxicity** Table 5. Water Quality Toxicity Event 47 - Ceriodaphnia dubia | Site ID | Ceriodaphnia dubia | | | | | | | | |----------|--------------------|------|----|--|--|--|--|--| | Site ib | Survival | TIE? | | | | | | | | 03_UNIV | No | No | No | | | | | | | 04_WOOD | Yes | Yes | No | | | | | | | 06_SOMIS | No | Yes | No | | | | | | | 07_HITCH | No | Yes | No | | | | | | | 9B_ADOLF | No | Yes | No | | | | | | | 10_GATE | No | No | No | | | | | | | 13_BELT | No | No | No | | | | | | ## **Event 47 Toxicity and TIE Summary** - Significant reductions in survival were observed for *Ceriodaphnia dubia* at the 04 WOOD site. - Significant reduced reproduction was observed for the 04_WOOD, 06_SOMIS, 07_HITCH, and 9B_ADOLF sites. - A TIE was not performed on any samples collected during the sampling event. # **Event 48 Water Quality Toxicity** Table 6. Water Quality Toxicity Event 48 - Ceriodaphnia dubia and Hyalella azteca | Site ID | (| Ceriodaphnia dubia | Hyalella | azteca | | |----------|----------|-----------------------|----------|----------|------| | Site ID | Survival | Survival Reproduction | | Survival | TIE? | | 03_UNIV | No | No | No | | | | 04_WOOD | | | | No | No | | 06_SOMIS | No | No | No | | | | 07_HITCH | No | Yes | No | | | | 9B_ADOLF | No | Yes | No | | | | 13_BELT | No | No | No | | | # **Event 48 Toxicity and TIE Summary** - No significant reductions in survival were observed for *Ceriodaphnia dubia* or *Hyalella azteca* for all sites. - Significant reproduction toxicity for *Ceriodaphnia dubia* was observed at the 07_HITCH and 9B_ADOLF sites. - A TIE was not performed on any samples collected during the sampling event. # **Event 49 Water Quality Toxicity** Table 7. Water Quality Toxicity Event 49 - Ceriodaphnia dubia and Hyalella azteca | Site ID | (| Ceriodaphnia dubia | Hyalella azteca | | | |----------|----------|--------------------|-----------------|----------|------| | Site ID | Survival | Reproduction | TIE? | Survival | TIE? | | 03_UNIV | No | No | No | | | | 04_WOOD | | | | Yes | No | | 07_HITCH | No | Yes | No | | | | 9B_ADOLF | No | No | No | | | | 10_GATE | No | No | No | | | # **Event 49 Toxicity and TIE Summary** - No significant reductions in survival were observed for *Ceriodaphnia dubia*. - Significant reduction in survival was observed for *Hyalella azteca* at the 04_WOOD site. - Significant reproduction toxicity for *Ceriodaphnia dubia* was observed at the 07_HITCH site. - A TIE was not performed on any samples collected during the sampling event. # Appendix E: # Laboratory QA/QC Results and Discussion ### QUALITY ASSURANCE/QUALITY CONTROL Quality assurance and quality control (QA/QC) measures are built into the CCWTMP to assure that collected data are credible. Two types of quality controls were conducted. Field quality controls (to test for field contamination and precision) were conducted by the field crews and include: equipment blanks, field blanks, and field duplicates. Laboratory quality controls (to test for laboratory contamination and precision) were conducted by the labs and include: method blanks, blank spikes, blank spike duplicates, lab duplicates, matrix spikes, matrix spike duplicates, laboratory control samples, and surrogates (organics only). Equipment blanks only apply to the shovels used in sediment sample collection. All field protocols for the collection of clean samples were followed according to the QAPP. The following section lists the quality control failures that occurred during the 2014-2015 monitoring year and any associated qualifiers and comments. #### **Blank Contamination** Blank samples are used to identify the presents of and potential sources of sample contamination. During the seventh year of monitoring, there were three types of blank samples conducted. - **Field blanks** are conducted by field crews and are looking for possible contamination in the collection and transportation of samples. - **Equipment blanks** are done by the field crews and are look for contamination with the sampling equipment. - **Laboratory blanks** are conducted by the analyzing laboratory and look for contamination in the lab. A majority of the blank failures were in the metals field blanks. There were only two other blank detections both for Total Kjeldahl Nitrogen (TKN). There were no equipment blank hits and the lab blank hits were all for metals as well. Even though the detections were above the MDL value, most were low compared to the environmental sample, so no qualification was needed. Details of all the blank hits are reported in Table 1 below. The following lists a basic summary of the blank contamination results: - Field Blanks 1619 analyzed 100 detections above the MDL (6.18%) (does not include surrogates) - Equipment Blanks 251 analyzed 0 detections above MDL (0.0%) (does not include lab duplicates or surrogates) - Laboratory Blanks 4190 analyzed 4 detections above MDL (0.10%) (does not include surrogates) #### **Precision** The purpose of analyzing duplicates is to demonstrate precision (reproducibility) of sample collection, preparation, and analytical methods. The relative percent difference (RPD) is reported for field duplicates, lab duplicates, blank spike duplicates, laboratory control spike (LCS) duplicates, and matrix spike duplicates. An RPD is computed as: $$RPD = 2 * |Oi - Di| / (Oi + Di) * 100$$ Where: RPD = Relative percent difference Oi = value of compound i in original sample Di = value of compound i in duplicate sample QA failures for precision are noted when the RPD between a sample and its duplicate are greater than the acceptance value. Details of all the RPD failures are reported in Table 2 below. The following list summarizes the precision analysis results: - Field Duplicates 1918 analyzed 77 failed RPD (4.01%) (does not include surrogates) - Laboratory Duplicates 1713 analyzed 75 failed RPD (4.38%) (includes surrogates) - Blank Spike/LCS Duplicates 3719 analyzed 24 failed RPD (0.65%) (includes surrogates) - Matrix Spike Duplicates 1148 analyzed 29 failed RPD (2.53%) (includes surrogates) ### Accuracy Accuracy is defined as the degree of agreement of a measurement to an accepted refecence or true value. Accuracy is measured as the percent recovery (%R) of a spiked compound and calculated as: $$%R = 100 * [(Cs - C) / S]$$ Where: %R = percent recovery Cs = analyzed spiked concentration C = analyzed concentration of sample matrix S = known spiked concentration Percent recoveries of blank spike samples (BS), laboratory control spike samples (LCS), and matrix spike samples (MS) check the accuracy of lab reported sample concentrations. For the BS's and LCS's that fell outside the acceptable range, all were for pesticides constituents, with more than half occurring in the May event from both tissue and water samples. The rest of the failed BS's were scattered across the entire monitoring year. For the matrix spike samples that fell outside the acceptable range, a little less than half of them were from the last event of the year in tissue and water samples. The distribution across nutrients, pesticides, and metals were pretty even. Table 3 summarizes the QA/QC sample results for accuracy that did not meet percent recovery objectives. The following lists the results of the accuracy analysis results: - Blank Spike/LCS Samples 7361 Analyzed 37 fell outside the range (0.50%) (does not include surrogates) - Matrix Spike Samples 2324 Analyzed 83 fell outside the range (3.57%) (does not include surrogates) **Table 1. Blank Contamination Observed** | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |--------------------------------|--------|--------|--------------------------------|----------------|----------------|--------------|-------------------|---| | General Water Quality | Watrix | LVCIII | Lab Batch | Diank | Diank | Diank | r rogram «damici | Comments | | None | | | | | | | | | | Nutrients | | | | | | | | | | Total Kjeldahl Nitrogen (mg/L) | Water | 44 | Associated_QC114
8898_W_CON | | 0.1 | | FD RPD | FieldDup RPD Failed | | Total Kjeldahl Nitrogen (mg/L) | Water | 49 | Associated_QC115
5252_W_CON | | 0.21 | | U | Upper Limit due to analyte found in blank | | OC Pesticieds | | | | | | | | | | None | | | | | | | | | | PCBs | | | | | | | | | | None | | | | | | | | | | OP Pesticides | | | | | | | | | | None | | | | | | | | | | Pyrethroid Pesticides | | | | | | | | | | None | | | | | | | | | | Metals & Selenium | | | | | | | | | | Aluminum, Total (μg/L) | Water | 45 | Physis E-8014 W | | 2.32 | | U | Upper Limit due to analyte found in blank | | Barium, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.27 | | | | | Barium, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.35 | | | | | Cadmium, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.007 | | | | | Cadmium, Dissolved (μg/L) | Water | 48 | Physis E-8059 W | | 0.0059 | | | | | Chromium, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.02 | | | | | Chromium, Dissolved (µg/L) | Water | 46 | Physis E-8027 W | | 0.02 |
| | | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |--------------------------|--------|-------|-----------------|----------------|----------------|--------------|-------------------|--| | Chromium, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.03 | | | | | Chromium, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.03 | | | | | Chromium, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.03 | | | | | Chromium, Total (µg/L) | Water | 49 | Physis E-8083 W | | 0.02 | | | | | Cobalt, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | | 0.36 | | U | Upper Limit due to analyte found in blank | | Cobalt, Total (µg/L) | Water | 49 | Physis E-8083 W | | 0.36 | | LD RPD, U, FD RPD | LabDuplicate RPD Failed,
Upper Limit due to analyte
found in blank, FieldDuplicate
RPD Failed | | Copper, Dissolved (µg/L) | Water | 44 | Physis E-7132 W | | 0.164 | | 7 - 7 | | | Copper, Dissolved (µg/L) | Water | 44 | Physis E-7137 W | | 0.022 | | LD RPD | LabDup RPD Failed | | Copper, Dissolved (µg/L) | Water | 44 | W4H0652 | | | 0.0695 | | • | | Copper, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.128 | | | | | Copper, Dissolved (µg/L) | Water | 45 | Physis E-8016 W | | 0.018 | | LD RPD | LabDup RPD Failed | | Copper, Dissolved (µg/L) | Water | 48 | Physis E-8059 W | | 0.008 | | LD RPD, FD RPD | LabDup RPD Failed, FieldDup
RPD Failed | | Copper, Dissolved (µg/L) | Water | 49 | Physis E-8082 W | | 0.018 | | | | | Copper, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.106 | | | | | Copper, Total (µg/L) | Water | 44 | Physis E-7137 W | | 0.025 | | | | | Copper, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.116 | | | | | Copper, Total (µg/L) | Water | 45 | Physis E-8016 W | | 0.241 | | | | | Copper, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.031 | | | | | Lead, Dissolved (µg/L) | Water | 44 | Physis E-7132 W | | 0.063 | | LD RPD, FD RPD | LabDup RPD Failed, FieldDup
RPD Failed | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |-----------------------------|--------|--------|-----------------|----------------|----------------|--------------|-------------------|--| | Constituent | Matrix | LVCIII | Lub Baten | Diank | Diank | Diank | r rogram Quamici | Comments | | Lead, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.045 | | LD RPD, U, FD RPD | LabDuplicate RPD Failed,
Upper Limit due to analyte
found in blank, FieldDuplicate
RPD Failed | | Lead, Dissolved (µg/L) | Water | 48 | Physis E-8059 W | | 0.0185 | | LD RPD, FD RPD | LabDup RPD Failed, FieldDup
RPD Failed | | Lead, Dissolved (µg/L) | Water | 49 | Physis E-8082 W | | 0.0029 | | U | Upper Limit due to analyte found in blank | | Lead, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | | 0.037 | | U | Upper Limit due to analyte found in blank | | Lead, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.197 | | LD RPD, U, FD RPD | LabDuplicate RPD Failed,
Upper Limit due to analyte
found in blank, FieldDuplicate
RPD Failed | | Lead, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.038 | | LD RPD, U | LabDuplicate RPD Failed,
Upper Limit due to analyte
found in blank | | Lead, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.033 | | LD IXI D, O | Tourid III Blatik | | Lead, Total (µg/L) | Water | 49 | Physis E-8083 W | | 0.005 | | | | | Manganese, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.041 | | | | | Manganese, Dissolved (µg/L) | Water | 47 | Physis E-8042 W | | 0.038 | | | | | Manganese, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.016 | | | | | Manganese, Total (μg/L) | Water | 45 | Physis E-8014 W | | 0.055 | | | | | Manganese, Total (μg/L) | Water | 47 | Physis E-8042 W | | 0.013 | | | | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |------------------------------|--------|-------|------------------|----------------|----------------|--------------|-------------------|----------------------------| | Mercury, Dissolved (µg/L) | Water | 44 | W4H0386 | Diank | Diami | 0.012 | r rogram quamior | Commonto | | Molybdenum, Dissolved | vvalei | 44 | VV4I 10300 | | | 0.012 | | | | (µg/L) | Water | 44 | Physis E-7132 W | | 0.15 | | | | | Molybdenum, Dissolved | | | • | | | | | | | (μg/L) | Water | 44 | Physis E-7137 W | | 0.032 | | | | | Molybdenum, Dissolved | Water | 45 | Physis E-8014 W | | 0.23 | | | | | (μg/L) Molybdenum, Dissolved | vvalei | 40 | F11y515 E-0014 W | | 0.23 | | | | | (μg/L) | Water | 45 | Physis E-8016 W | | 0.083 | | | | | Molybdenum, Dissolved | | | • | | | | | | | (μg/L) | Water | 46 | Physis E-8027 W | | 0.05 | | | | | Molybdenum, Dissolved | Motor | 48 | Dhysis E 9055 W | | 1.01 | | | | | (μg/L) Molybdenum, Dissolved | Water | 40 | Physis E-8055 W | | 1.01 | | | | | (μg/L) | Water | 48 | Physis E-8059 W | | 0.005 | | | | | Molybdenum, Dissolved | | | , | | | | | | | (μg/L) | Water | 49 | Physis E-8082 W | | 0.013 | | | | | Molybdenum, Total (μg/L) | Water | 44 | Physis E-7132 W | | 0.11 | Upper Limit due to analyte | | Molybdenum, Total (μg/L) | Water | 44 | Physis E-7137 W | | 0.026 | | U | found in blank | | Molybdenum, Total (μg/L) | Water | 45 | Physis E-8014 W | | 0.21 | | | | | Molybdenum, Total (µg/L) | Water | 45 | Physis E-8016 W | | 0.067 | | | | | Molybdenum, Total (μg/L) | Water | 46 | Physis E-8027 W | | 0.06 | | | | | Molybdenum, Total (µg/L) | Water | 48 | Physis E-8055 W | | 0.56 | | | | | Molybdenum, Total (µg/L) | Water | 49 | Physis E-8082 W | | 0.009 | | | | | Nickel, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.03 | | | | | Nickel, Dissolved (µg/L) | Water | 45 | Physis E-8016 W | | 0.0054 | | | | | Nickel, Dissolved (µg/L) | Water | 49 | Physis E-8082 W | | 0.0078 | | | | | Nickel, Total (µg/L) | Water | 44 | Physis E-7132 W | | 0.02 | | | | | Nickel, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.33 | | | | | Nickel, Total (µg/L) | Water | 45 | Physis E-8016 W | | 0.0078 | | | | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |-----------------------------|--------|-------|-----------------|----------------|----------------|--------------|-------------------|--| | Nickel, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.04 | | | | | Selenium, Dissolved (µg/L) | Water | 48 | Physis E-8059 W | | 0.011 | | | | | Selenium, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.03 | | | | | Selenium, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.02 | | | | | Silver, Dissolved (µg/L) | Water | 45 | Physis E-8016 W | | 0.02 | | LD RPD, U | LabDuplicate RPD Failed,
Upper Limit due to analyte
found in blank | | Silver, Dissolved (µg/L) | Water | 48 | Physis E-8059 W | | 0.02 | | | | | Silver, Dissolved (µg/L) | Water | 49 | Physis E-8082 W | | 0.04 | | U | Upper Limit due to analyte found in blank | | Silver, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | | 0.02 | | | | | Silver, Total (µg/L) | Water | 45 | Physis E-8016 W | | 0.01 | | | | | Silver, Total (µg/L) | Water | 48 | Physis E-8059 W | | 0.03 | | | | | Silver, Total (µg/L) | Water | 49 | Physis E-8082 W | | 0.07 | | U | Upper Limit due to analyte found in blank | | Silver, Total (μg/L) | Water | 49 | Physis E-8083 W | | 0.01 | | | | | Strontium, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.14 | | EST MS/MSD | Estimate due to MS/MSD
RPD failed | | Strontium, Total (μg/L) | Water | 45 | Physis E-8014 W | | 0.04 | | | | | Thallium, Dissolved (μg/L) | Water | 45 | Physis E-8014 W | | 0.02 | | U | Upper Limit due to analyte found in blank | | Thallium, Dissolved (μg/L) | Water | 46 | Physis E-8027 W | | 0.09 | | | | | Thallium, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | | 0.02 | | U | Upper Limit due to analyte found in blank | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |----------------------------|--------|-------|-----------------|----------------|----------------|--------------|-------------------|--| Upper Limit due to analyte | | Thallium, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.01 | | U | found in blank | | Thallium, Total (µg/L) | Water | 46 | Physis E-8027 W | | 0.07 | | | | | Thallium, Total (µg/L) | Water | 49 | Physis E-8083 W | | 0.02 | | | | | Titanium, Dissolved (μg/L) | Water | 45 | Physis E-8014 W | | 0.15 | | | | | Titanium, Dissolved (μg/L) | Water | 48 | Physis E-8055 W | | 0.18 | | | | | Titanium, Total (µg/L) | Water | 48 | Physis E-8055 W | | 0.14 | | | | | Vanadium, Dissolved (μg/L) | Water | 45 | Physis E-8014 W | | 0.03 | | | | | Vanadium, Dissolved (μg/L) | Water | 47 | Physis E-8042 W | | 0.1 | | | | | Vanadium, Dissolved (μg/L) | Water | 48 | Physis E-8055 W | | 0.08 | | | | | Vanadium, Total (μg/L) | Water | 45 | Physis E-8014 W | | 0.03 | | | | | Vanadium, Total (µg/L) | Water | 47 | Physis E-8042 W | | 0.06 | | | | | Vanadium, Total (µg/L) | Water | 48 | Physis E-8055 W | | 0.09 | | | | | | | | | | | | | | | Zinc, Dissolved (µg/L) | Water | 44 | Physis E-7137 W | | 0.1424 | | FD RPD | FieldDup RPD Failed | | Zinc, Dissolved (µg/L) | Water | 44 | W4H0652 | | | 3.72 | | | | | | | | | | | | | | Zinc, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | | 0.51 | | U | Upper Limit due to analyte found in blank | | Zinc, Dissolved (µg/L) | Water | 45 | W4L0056 | | 0.01 | 1.85 | | Todita in Blank | | <u> </u> | water | 40 | VV-120000 | | | 1.00 | |
 | Zinc, Dissolved (µg/L) | Water | 47 | Physis E-8042 W | | 1.25 | | FD RPD | FieldDup RPD Failed | | Zinc, Dissolved (µg/L) | Water | 48 | Physis E-8055 W | | 0.22 | | | | | | | | | | | | | | | Zinc, Dissolved (µg/L) | Water | 48 | Physis E-8059 W | | 0.1782 | | FD RPD | FieldDup RPD Failed | Upper Limit due to analyte found in blank, FieldDup RP | | Zinc, Total (µg/L) | Water | 44 | Physis E-7137 W | | 0.3735 | | U, FD RPD | Failed | | Constituent | Matrix | Event | Lab Batch | Equip
Blank | Field
Blank | Lab
Blank | Program Qualifier | Comments | |--------------------|--------|-------|-----------------|----------------|----------------|--------------|-------------------|---------------------| | Zinc, Total (µg/L) | Water | 45 | Physis E-8014 W | | 0.5 | | | | | Zinc, Total (µg/L) | Water | 47 | Physis E-8042 W | | 1.06 | | | | | Zinc, Total (μg/L) | Water | 48 | Physis E-8055 W | | 0.26 | | | | | Zinc, Total (µg/L) | Water | 48 | Physis E-8059 W | | 0.13 | | FD RPD | FieldDup RPD Failed | Table 2. Precision QA/QC Issues | | | | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | | |------------------|----------|-------|----------------|-------------|------------|--------------|------------|------------|--|------------------------| | Constituent | Matrix | Event | Lab Batch | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | General Water | | | | | | | | | | | | Quality | | | | | | | | | | | | Clay, <0.0039 | | | IIRMES_GC-02- | | | | | | | | | mm (%) | Sediment | 44 | 129_S_GS | 01_BPT_14 | | 52 | | | FD RPD | FieldDup RPD Failed | | Dissolved | | | | | | | | | | | | Organic Carbon | | | Associated_QC | | | | | | | | | (mg/L) | Water | 44 | 1148873 | 01_BPT_14 | | 34 | | | | | | Sand, 0.0625 to | | | IIRMES_GC-02- | | | | | | | | | <2.0 mm (%) | Sediment | 44 | 129_S_GS | 01_BPT_14 | | 44 | | | FD RPD | FieldDup RPD Failed | | | | | | | | | | | | MS failed lower limit, | | | | | | | | | | | MS <ll,< td=""><td>Estimate due to RPD</td></ll,<> | Estimate due to RPD | | Total Hardness | | | Physis E-8014 | 01T_ODD2_DC | | | | | EST | failure between | | (calc) (mg/L) | Water | 45 | W | Н | | 6 | 1 | 111 | MS/MSD | MS/MSD | | Total Organic | | | | | | | | | | | | Carbon, Total (% | _ | | IIRMES_GC-02- | | | | | | | LabDuplicate RPD | | Dry Weight) | Sediment | 44 | 128_S_TOC | 07_HITCH | | | 100 | | LD RPD | Failed | | Total Organic | | | | | | | | | | | | Carbon, Total (% | | | IIRMES_GC-02- | | | | | | | | | Dry Weight) | Sediment | 44 | 130_S_TOC | 01_BPT_14 | | 84 | | | FD RPD | FieldDup RPD Failed | | Total Suspended | | | Physis C-17036 | | | | | | | LabDuplicate RPD | | Solids (mg/L) | Water | 44 | W | 07T_DC_H | | | 36 | | LD RPD | Failed | | | | | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | _ | |-------------------|----------|-------|--------------------|---------------|------------|--------------|------------|------------|-----------|---------------------| | Constituent | Matrix | Event | | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | Total Suspended | | | Physis C-17055 | | | | | | | | | Solids (mg/L) | Water | 45 | W | 01_BPT_15 | | 76 | 22 | | FD RPD | FieldDup RPD Failed | | Total Suspended | | 4.0 | Physis C-17087 | 04 887 0 | | | | | 55.555 | | | Solids (mg/L) | Water | 48 | W | 01_BPT_3 | | 42 | | | FD RPD | FieldDup RPD Failed | | Lipid (% Dry | | | Physis C-22113 | | | | | | | LabDuplicate RPD | | Weight) | Tissue | 49 | W | 03_UNIV | | | 32 | | LD RPD | Failed | | Nutrients | | | | | | | | | | | | Ammonia as N | | | Physis C-18032 | | | | | | | | | (mg/L) | Water | 44 | W | 03_UNIV | | 40 | | | | | | Nitrite as N | | | Physis C-21138 | | | | | | | | | (mg/L) | Water | 46 | W | 04_WOOD | | 0 | 40 | 0 | | | | OrthoPhosphate | | | Physis C-21066 | | | | | | | | | as P (mg/L) | Water | 44 | W | 03_UNIV | | | | 31 | | | | | | | Associated_QC | | | | | | | | | Total Kjeldahl | | | 1148898_W_C | | | | | | | | | Nitrogen (mg/L) | Water | 44 | ON | 10_GATE | | 179 | | | FD RPD | FieldDup RPD Failed | | | | | Associated_QC | | | | | | | | | Total Kjeldahl | 144 | 4- | 1151124_W_C | 07 1117011 | | 400 | | | ED DDD | E' | | Nitrogen (mg/L) | Water | 45 | ON | 07_HITCH | | 168 | | | FD RPD | FieldDup RPD Failed | | OC Pesticides | | | | | | | | | | | | Chlordane, | | | Physis O-6068 | | | | | | | | | alpha- (ng/dry g) | Sediment | 44 | W | 9B_ADOLF | | | 90 | 8 | | | | Chlordane, | | | Physis O-7130 | 01_Western_Ar | | | | | | | | alpha- (ng/dry g) | Tissue | 49 | W | m | 14 | | 89 | | | | | Chlordane, | | | | | | | | | | | | gamma- (ng/dry | | | Physis O-6068 | 00.40015 | | | | _ | | | | g) | Sediment | 44 | W | 9B_ADOLF | | | 71 | 7 | | | | DDD(o,p') | 01:1 | 4.4 | Physis O-6088 | 04 DDT 44 | | 0.5 | 40 | 4.4 | | | | (ng/dry g) | Sediment | 44 | W
Dhysis O 6000 | 01_BPT_14 | | 9.5 | 40 | 14 | | | | DDD(p,p') | Codimont | 11 | Physis O-6088 | 01 DDT 44 | | 24 | 02 | 17 | | | | (ng/dry g) | Sediment | 44 | W
Physis O-7016 | 01_BPT_14 | | 34 | 83 | 17 | | | | DDE(o,p'), Total | Water | 46 | W | 04_WOOD | | 36 | | | FD RPD | FieldDup RPD Failed | | (µg/L) | vvalei | 40 | V V | U4_VVOOD | | 30 | | | רט גרט | FieldDup KFD Falled | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |-------------------------|----------|--------|--------------------|---------------|-------------------|---------------------|-------------------|-------------------|---|--| | DDE(o,p'), Total | ITIALIIA | FACIII | Physis O-7042 | Oile | INFU | NED | KFD | INFU | Qualifiel | Comments | | (μg/L) | Water | 47 | W | 03_UNIV | | 53 | | | Н | Holdtime exceeded | | DDE(p,p') (ng/dry | | | Physis O-6068 | | | | | | | LabDuplicate RPD | | g) | Sediment | 44 | W | 9B_ADOLF | | | 88 | 1 | LD RPD | Failed | | DDE(p,p') (ng/dry | | | Physis O-6072 | | | | | | | LabDuplicate RPD | | g) | Sediment | 44 | W | 04_WOOD | | | 186 | 0 | LD RPD | Failed | | DDE(p,p') (ng/dry | | | Physis O-7132 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 14 | | 13 | 368 | | | | DDE(p,p') (ng/dry | | | Physis O-7134 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 2 | | 6 | 93 | | | | DDE(p,p') (ng/dry
g) | Tissue | 49 | Physis O-7148
W | 04_WOOD | 3 | | 23 | 261 | MS <ll,
MS >UL,
EST
MS/MSD</ll,
 | MS failed lower limit,
MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | DDE(p,p'), Total | | | Physis O-6066 | | | | | | | | | (µg/L) | Water | 44 | W | 03_UNIV | | 71 | | | | | | DDT(o,p') (ng/dry | | | Physis O-6072 | | | | | | | | | g) | Sediment | 44 | W | 04_WOOD | | | | 32 | | | | DDT(o,p') (ng/dry | | | Physis O-7130 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 8 | | 33 | | | | | DDT(o,p'), Total | | | Physis O-7016 | | | | | | | | | (µg/L) | Water | 46 | W | 04_WOOD | | 58 | | | FD RPD | FieldDup RPD Failed | | DDT(p,p') (ng/dry
g) | Sediment | 44 | Physis O-6068
W | 9B_ADOLF | | | 118 | 31 | LD RPD,
MS <ll,
EST
MS/MSD</ll,
 | LabDuplicate RPD
Failed, MS failed
lower limit, Estimate
due to RPD failure
between MS/MSD | | DDT(p,p') (ng/dry | | , | Physis O-6072 | | | | | | | | | g) | Sediment | 44 | W | 04_WOOD | | | | 45 | | | | DDT(p,p') (ng/dry
g) | Sediment | 44 | Physis O-6072
W | 04_WOOD | | | 69 | | EST
MS/MSD | Estimate due to MS/MSD RPD failed | | DDT(p,p') (ng/dry | | | Physis O-6088 | | | | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | | | 43 | | | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |---|----------|-------|--------------------|--------------------|-------------------|---------------------|-------------------|-------------------|--|--| | DDT(p,p') (ng/dry g) | Tissue | 49 | Physis O-7148
W | 04 WOOD | 4 | | 15 | 31 | MS >UL,
EST
MS/MSD | MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | DDT(p,p'), Total
(μg/L) | Water | 45 | Physis O-6150
W | 01T_ODD2_DC
H | | 48 | | | | | | DDT(p,p'), Total
(µg/L) | Water | 46 | Physis O-7016
W | 04_WOOD | | 53 | | | FD RPD | FieldDup RPD Failed | | DDT(p,p'), Total
(μg/L) | Water | 48 | Physis O-7060
W | 04_WOOD | | 86 | | | | | | Endosulfan I
(ng/dry g) | Tissue | 49 | Physis O-7134
W | 01_Western_Ar
m | 11 | | 0 | 53 | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan II
(ng/dry g) | Water | 44 | Physis O-6068
W | LABQA | 41 | | | | EST
BS/BSD | Estimate due to BS/BSD RPD failed | | Endosulfan II
(ng/dry g) | Tissue | 49 | Physis O-7132
W | 01_Western_Ar
m | 3 | | 0 | 49 | | | | Endrin Aldehyde
(ng/dry g) | Tissue | 49 | Physis O-7150
W | 03_UNIV | 17 | | 0 | 48 | EST
MS/MSD | Estimate due to MS/MSD RPD failed | | Hexachlorobenz
ene (ng/dry g) | Tissue | 49 | Physis O-7130
W | 01_Western_Ar
m | 18 | | 31 | | | | | Hexachlorobenz
ene (ng/dry g) | Tissue | 49 | Physis O-7134
W | 01_Western_Ar
m | 7 | | 32 | 21 | | | | Hexachlorobenz
ene, Total (µg/L) | Water | 47 | Physis O-7042
W | 03_UNIV | | 38 | | | Н | Holdtime exceeded | | Methoxychlor
(ng/dry g) | Sediment | 44 | Physis O-6072
W | 04_WOOD | | | | 39 | | | | Methoxychlor
(ng/dry g) | Sediment | 44 | Physis O-6088
W | 01_BPT_14 | | | | 60 | | | | Nonachlor, trans (ng/dry g) | Sediment | 44 | Physis O-6068
W | 9B_ADOLF | | | 109 |
5 | | | | Tetrachloro-m-
xylene-2,4,5,6
(Surrogate),
Total (%) | Water | 47 | Physis O-7042
W | 03_UNIV | | 32 | | | Н | Holdtime exceeded | | | | | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | | |-----------------------|----------------|-------|--------------------|------------------------|------------|--------------|------------|------------|---------------|-------------------| | Constituent | Matrix | Event | Lab Batch | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | Toxaphene | | | Physis O-6068 | | | | | | | | | (ng/dry g) | Sediment | 44 | W | 9B_ADOLF | | | | 35 | | | | Toxaphene | | | Physis O-6072 | | | | | | | | | (ng/dry g) | Sediment | 44 | W | 04_WOOD | | | | 32 | | | | PCBs | | | | | | | | | | | | PCB 049 (ng/dry | | | Physis O-7130 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 9 | | 43 | | | | | PCB 095 (ng/dry | | | Physis O-6088 | | | | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 46 | 12 | | | | PCB 095 (ng/dry | | | Physis O-7148 | | | | | | | | | g) | Tissue | 49 | W | 04_WOOD | 3 | | 32 | 13 | | | | 9)
PCB 101 (ng/dry | 113300 | 43 | Physis O-6088 | 0 1 _000D | <u> </u> | | JZ | 10 | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 67 | 16 | 11 | | | | 9) | Ocamicin | | | 01_DI 1_1 1 | | | 10 | - '' | FOT | F.C., t. I. t. | | DOD 105 (u.a/l.) | Motor | 46 | Physis O-7024 | LADOA | 26 | | | | EST
BS/BSD | Estimate due to | | PCB 105 (µg/L) | Water | 46 | W 7420 | LABQA | 36 | | | | BS/BSD | BS/BSD RPD failed | | PCB 105 (ng/dry | Tioquo | 49 | Physis O-7130
W | 01_Western_Ar | 4 | | 56 | | | | | g)
PCB 110 (ng/dry | Tissue | 49 | Physis O-6088 | m | 4 | | 30 | | | | | , - | Sediment | 44 | W | 01_BPT_14 | | 33 | 7 | 16 | | | | g) | Sediment | 44 | Physis O-7148 | UI_DF1_14 | | <u> </u> | - 1 | 10 | | | | PCB 110 (ng/dry | | | W | | | | | | | | | g) | Tissue | 49 | VV | 04_WOOD | 3 | | 34 | 6 | | | | PCB 112 | | | | | | | | | | | | (Surrogate), | | | Physis O-6066 | | | | | | | | | Total (%) | Water | 44 | W | 03_UNIV | | 63 | | | | | | PCB 123 (ng/dry | | | Physis O-6088 | | | _ | | _ | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 79 | 8 | | | | PCB 126 (ng/dry | _ . | 4.0 | Physis O-7134 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 6 | | 32 | 1 | | | | PCB 138 (ng/dry | 0 " | | Physis O-6088 | 04 DDT 44 | | 00 | 44= | 4- | | LabDuplicate RPD | | g) | Sediment | 44 | W | 01_BPT_14 | | 29 | 115 | 15 | LD RPD | Failed | | PCB 149 (ng/dry | On allian and | 4.4 | Physis O-6088 | 04 DDT 44 | | 40 | 50 | 44 | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 12 | 59 | 11 | | | | O a maditus and | Matrix | Frant | Lab Datah | Cita | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | O a martin | |--------------------------------|---------------|-------|-------------------------|-------------------|------------|--------------|------------|------------|-----------|----------------------| | Constituent
PCB 149 (ng/dry | Matrix | Event | Lab Batch Physis O-7148 | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | g) | | | W | | | | | | | | | | Tissue | 49 | | 04_WOOD | 4 | | 41 | 13 | | | | PCB 151 (ng/dry | | | Physis O-6088 | | | _ | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 62 | 11 | | | | PCB 153 (ng/dry | 01: | 4.4 | Physis O-6088 | 04 DDT 44 | | _ | 00 | 40 | | | | g) | Sediment | 44 | W 7422 | 01_BPT_14 | | 5 | 89 | 12 | | | | PCB 153 (ng/dry | Tionus | 49 | Physis O-7132 | 01_Western_Ar | 4 | | 16 | 68 | | | | g)
PCB 153, Total | Tissue | 49 | W
Physis O-7042 | m | 11 | | 10 | 00 | | | | РСБ 153, Токаг
(µg/L) | Water | 47 | W | 03_UNIV | | 67 | | | Н | Holdtime exceeded | | (µg/⊏)
PCB 156 (ng/dry | vvalti | 41 | Physis O-7132 | 01_Western_Ar | | 07 | | | 11 | i ioidiiiie exceeded | | g) | Tissue | 49 | W | m | 10 | | 40 | 6 | | | | PCB 156 (ng/dry | 110000 | -10 | Physis O-7134 | 01_Western_Ar | 10 | | | | | | | g) | Tissue | 49 | W | m | 5 | | <i>7</i> 5 | 9 | | | | PCB 158 (ng/dry | 1.000.0 | | Physis O-7130 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 6 | | 74 | | | | | PCB 167, Total | | | Physis O-7042 | | | | | | EST | Estimate due to | | (µg/L) | Water | 47 | W | LABQA | 48 | | | | BS/BSD | BS/BSD RPD failed | | PCB 168/132 | Water | | Physis O-6088 | L/ (DQ/ (| | | | | 20,202 | DO/DOD IN D Idilod | | (ng/dry g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 62 | 15 | | | | PCB 170 (ng/dry | | | Physis O-6088 | * | | | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 33 | 13 | 7 | | | | PCB 174 (ng/dry | | | Physis O-6088 | | | | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 62 | 9 | | | | PCB 177 (ng/dry | | | Physis O-6088 | | | | | | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 0 | 46 | 10 | | | | PCB 177 (ng/dry | | | Physis O-7130 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 6 | | 34 | | | | | PCB 180 (ng/dry | | | Physis O-6088 | | | | | _ | | | | g) | Sediment | 44 | W | 01_BPT_14 | | 26 | 70 | 9 | | | | PCB 183 (ng/dry | - | 40 | Physis O-7130 | 01_Western_Ar | 00 | | | | | | | g) | Tissue | 49 | W | m | 20 | | 44 | | | | | PCB 187 (ng/dry | Codimont | 4.4 | Physis O-6088 | 04 DDT 4 <i>4</i> | | 0 | 71 | 0 | | | | g) | Sediment | 44 | | 01_BPT_14 | | 0 | 77 | 8 | | | | | | _ | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | | |---|---------------|-------|--------------------|--------------------|------------|--------------|------------|------------|---|------------------------| | Constituent | Matrix | Event | Lab Batch | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | PCB 187 (ng/dry | - | 40 | Physis O-7132 | 01_Western_Ar | • | | | 40 | | | | g) | Tissue | 49 | W 7400 | M | 8 | | 14 | 48 | | | | PCB 194 (ng/dry | Tiesus | 40 | Physis O-7132 | 01_Western_Ar | 7 | | 27 | 7 | | | | g) | Tissue | 49 | W
Physis O-7130 | m
01_Western_Ar | | | 37 | 7 | | | | PCB 195 (ng/dry | Tissue | 49 | W | m | 24 | | 62 | | | | | g)
PCB 198 | rissue | 49 | VV | 111 | 24 | | 02 | | | | | (Surrogate), | | | Physis O-6066 | | | | | | | | | Total (%) | Water | 44 | W | 03 UNIV | | 65 | | | | | | PCB 206 (ng/dry | vvator | | Physis O-7132 | 01_Western_Ar | | | | | | | | g) | Tissue | 49 | W | m | 5 | | 0 | 38 | | | | PCB 209 (ng/dry | | | Physis O-7132 | 01 Western Ar | | | | | | | | g) | Tissue | 49 | W | m | 16 | | 0 | 40 | | | | PCB 209, Total | | | Physis O-7016 | | | | | | EST | Estimate due to | | (μg/L) | Water | 46 | W | LABQA | 42 | | | | BS/BSD | BS/BSD RPD failed | | PCB AROCLOR | · · · · · · · | 10 | Physis O-6088 | LADGA | | | | | Berbeb | LabDuplicate RPD | | 1254 (ng/dry g) | Sediment | 44 | W | 01_BPT_14 | | 57 | 89 | | LD RPD | Failed | | OP Pesticides | | | | | | - | | | | | | | | | | | | | | | | | | Azinphos methyl | Water | 4.4 | W4H0315 | 10D HILL | 33 | | | | | | | (Guthion) (µg/L) | vvalei | 44 | VV4HU313 | IUD_HILL | 33 | | | | | | | | | | | | | | | | BS <ll,< td=""><td>BS failed lower limit,</td></ll,<> | BS failed lower limit, | | Chlorpyrifos | | | Physis O-7132 | | | | | | EST | Estimate due to | | (ng/dry g) | Water | 49 | W | LABQA | 31 | | | | BS/BSD | BS/BSD RPD failed | | Chlorpyrifos | 0 " (| | Physis O-6072 | 04.14/000 | | | | • | | | | (ng/dry g) | Sediment | 44 | W | 04_WOOD | | | 32 | 6 | | | | Chlorpyrifos, | \\/ata= | 45 | Physis O-6150 | 01T_ODD2_DC | | 24 | | | | FieldDue DDD Feiled | | Total (µg/L) | Water | 45 | W | Н | | 34 | | | FD RPD | FieldDup RPD Failed | | Demeton-s | | | Physis O-6072 | | | | | | EST | Estimate due to | | (ng/dry g) | Water | 44 | W | LABQA | 32 | | | | BS/BSD | BS/BSD RPD failed | | Demeton-s, Total | | | Physis O-6144 | | | | | | EST | Estimate due to | | (µg/L) | Water | 45 | W | 07D_SIMI | 45 | | | | BS/BSD | BS/BSD RPD failed | | Diazinon (µg/L) | Water | 44 | W4H0315 | 10D_HILL | 29 | | <u>-</u> | | | | | Diazinon (µg/L) | Water | 49 | W5E1199 |
10D_HILL | | | | 31 | | | | - · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |-----------------------------|----------|-------|--------------------|------------------|-------------------|---------------------|-------------------|-------------------|------------------------------------|--| | Diazinon, Total
(μg/L) | Water | 46 | Physis O-7016
W | 04_WOOD | | 31 | | | FD RPD | FieldDup RPD Failed | | Dimethoate (ng/dry g) | Sediment | 44 | Physis O-6072
W | 04_WOOD | | | | 31 | | | | Dimethoate,
Total (µg/L) | Water | 47 | Physis O-7046
W | LABQA | <i>7</i> 8 | | | | EST
BS/BSD | Estimate due to BS/BSD RPD failed | | Disulfoton
(ng/dry g) | Water | 44 | Physis O-6072
W | LABQA | 31 | | | | EST
BS/BSD | Estimate due to
BS/BSD RPD failed | | Disulfoton
(ng/dry g) | Sediment | 44 | Physis O-6072
W | 04_WOOD | | | | 40 | EST
BS/BSD | Estimate due to
BS/BSD RPD failed | | Disulfoton, Total
(µg/L) | Water | 45 | Physis O-6144
W | 07D_SIMI | 51 | | | | EST
BS/BSD | Estimate due to
BS/BSD RPD failed | | Ethoprop (µg/L) | Water | 44 | W4H0315 | 10D_HILL | 27 | | | | | | | Ethyl parathion (µg/L) | Water | 45 | W4K0927 | 10D_HILL | | | | 36 | | | | Malathion, Total (μg/L) | Water | 49 | Physis O-7098
W | 01T_ODD2_DC
H | | 48 | | | | | | Mevinphos, Total (μg/L) | Water | 44 | Physis O-6082
W | LABQA | 62 | | | | BS <ll,
EST
BS/BSD</ll,
 | BS failed lower limit,
Estimate due to
BS/BSD RPD failed | | Perylene-d12
(µg/L) | Water | 49 | W5E1327 | 10D_HILL | 56 | | | | | | | Triphenyl phosphate (µg/L) | Water | 49 | W5E1327 | 10D_HILL | 53 | | | | | | | PAHs | | | | | | | | | | | | None | | | | | | | | | | | | Pyrethroid
Pesticides | | | | | |
 | | | | | Bifenthrin, Total
(μg/L) | Water | 44 | Physis O-6066
W | 03_UNIV | | 67 | | | | | | Bifenthrin, Total (µg/L) | Water | 48 | Physis O-7060
W | 04_WOOD | | 167 | | | FD RPD | FieldDup RPD Failed | | | | | | | BS/
BSD | Field | Lab | MS/
MSD | Dreasem | | |-------------------|---------|-------|---------------------|-------------|------------|------------|------------|------------|---|----------------------------| | Constituent | Matrix | Event | Lab Batch | Site | RPD | Dup
RPD | Dup
RPD | RPD | Program
Qualifier | Comments | | Cyfluthrin, Total | | | Physis O-7016 | | | | | | | | | (µg/L) | Water | 46 | W | 04_WOOD | | 187 | | | FD RPD | FieldDup RPD Failed | | Esfenvalerate, | | | Physis O-7042 | | | | | | | • | | Total (µg/L) | Water | 47 | W | 03_UNIV | | 118 | | | FD RPD | FieldDup RPD Failed | | Fenvalerate, | | | Physis O-7042 | | | | | | | | | Total (µg/L) | Water | 47 | W | 03_UNIV | | 86 | | | | | | L-Cyhalothrin, | | | Physis O-7016 | | | | | | | | | Total (µg/L) | Water | 46 | W | 04_WOOD | | 160 | | | FD RPD | FieldDup RPD Failed | | L-Cyhalothrin, | | | Physis O-7098 | | | | | | | | | Total (µg/L) | Water | 49 | W | 9B_ADOLF | | 35 | | | | | | | | | | | | | | | BS <ll,< td=""><td>BS failed lower limit,</td></ll,<> | BS failed lower limit, | | Permethrin, cis-, | | | Physis O-6066 | | | | | | EST | Estimate due to | | Total (µg/L) | Water | 44 | W | LABQA | 76 | | | | BS/BSD | BS/BSD RPD failed | | Permethrin, cis-, | | | Physis O-7056 | | | | | | | | | Total (µg/L) | Water | 48 | W | LABQA | 46 | | | | | | | Permethrin, cis-, | | | Physis O-7016 | | | | | | | | | Total (µg/L) | Water | 46 | W | 04_WOOD | | 184 | | | FD RPD | FieldDup RPD Failed | | Permethrin, | | | Physis O-6066 | | | | | | EST | Estimate due to | | trans- (µg/L) | Water | 44 | W | LABQA | 39 | | | | BS/BSD | BS/BSD RPD failed | | Permethrin, | | | | | | | | | | | | trans-, Total | | | Physis O-6066 | | | | | | EST | Estimate due to | | (µg/L) | Water | 44 | W | LABQA | 39 | | | | BS/BSD | BS/BSD RPD failed | | Permethrin, | | | | | | | | | | | | trans-, Total | | | Physis O-7016 | | | | | | | | | (µg/L) | Water | 46 | W | 04_WOOD | | 187 | | | FD RPD | FieldDup RPD Failed | | Metals and | | | | | | | | | | | | Selenium | | | | | | | | | | | | Aluminum, | | | Physis E-8014 | 01T_ODD2_DC | | | | _ | | | | Dissolved (μg/L) | Water | 45 | W | H | | 70 | 20 | 3 | | | | Aluminum, | 147 | | Physis E-8016 | DDT :: | | | | | | | | Dissolved (µg/L) | Water | 45 | W | 01_BPT_14 | | | 70 | | | 1 15 2 1 5 555 | | Aluminum, | 147-1 | 4 | Physis E-8042 | 01T_ODD2_DC | | | 440 | | 10000 | LabDuplicate RPD | | Dissolved (µg/L) | Water | 47 | W
Dharain F 0040 | Н | | | 146 | 1 | LD RPD | Failed | | Aluminum, | \/\ata= | 47 | Physis E-8042 | 02 11011/7 | | 36 | | | | LabDuplicate RPD
Failed | | Dissolved (µg/L) | Water | 47 | W | 03_UNIV | | 30 | | | LD RPD | ralleu | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |------------------------------|--------|-------|--------------------|------------------|-------------------|---------------------|-------------------|-------------------|-------------------------|---| | Aluminum, | | | Physis E-8083 | 01T_ODD2_DC | | | | | | | | Dissolved (µg/L) | Water | 49 | W | Η | | 46 | 23 | 9 | | | | Aluminum, Total | | | Physis E-8059 | | | | | | | | | (µg/L) | Water | 48 | W | 01_BPT_3 | | 34 | | | FD RPD | FieldDup RPD Failed | | Antimony, | | | Physis E-8042 | | | | | | | • | | Dissolved (µg/L) | Water | 47 | W | 03_UNIV | | 33 | | | FD RPD | FieldDup RPD Failed | | Arsenic, | | | Physis E-8083 | 01T_ODD2_DC | | | | | | • | | Dissolved (µg/L) | Water | 49 | W | Н | | 32 | 9 | 2 | FD RPD | FieldDup RPD Failed | | Cadmium,
Dissolved (µg/L) | Water | 46 | Physis E-8027
W | 04_WOOD | | 41 | 39 | 1 | LD RPD,
FD RPD | LabDuplicate RPD
Failed,
FieldDuplicate RPD
Failed | | Chromium, | | | Physis E-8029 | | | | | | | LabDuplicate RPD | | Dissolved (µg/L) | Water | 46 | W | 01_RR_BR | | | 49 | | LD RPD | Failed | | Chromium, | | | Physis E-8059 | | | | | | | | | Dissolved (µg/L) | Water | 48 | W | 01_BPT_3 | | 131 | | | FD RPD | FieldDup RPD Failed | | Cobalt, | | | Physis E-8027 | | | | | | | | | Dissolved (µg/L) | Water | 46 | W | 04_WOOD | | 37 | 6 | 0 | FD RPD | FieldDup RPD Failed | | Cobalt, Total
(µg/L) | Water | 49 | Physis E-8083
W | 01T_ODD2_DC
H | | 65 | 45 | | LD RPD,
U, FD
RPD | LabDuplicate RPD Failed, Upper Limit due to analyte found in blank, FieldDuplicate RPD Failed | | Copper, | | | Physis E-7137 | | | | | | | LabDuplicate RPD | | Dissolved (µg/L) | Water | 44 | W | 01_BPT_14 | | 15 | 36 | | LD RPD | Failed | | Copper,
Dissolved (µg/L) | Water | 45 | Physis E-8016
W | 01_BPT_14 | | | 80 | | LD RPD | LabDuplicate RPD
Failed | | Copper,
Dissolved (µg/L) | Water | 46 | Physis E-8029
W | 01_RR_BR | | | 35 | | LD RPD | LabDuplicate RPD
Failed | | Copper,
Dissolved (µg/L) | Water | 48 | Physis E-8059
W | 01_BPT_14 | | | 188 | | LD RPD,
FD RPD | LabDuplicate RPD
Failed,
FieldDuplicate RPD
Failed | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |--------------------|--------|-------|---------------|-------------|-------------------|---------------------|-------------------|-------------------|----------------------|----------------------| | | | | | | | | | | | LabDuplicate RPD | | _ | | | | | | | | | | Failed, | | Copper, | | | Physis E-8059 | | | | | | LD RPD, | FieldDuplicate RPD | | Dissolved (µg/L) | Water | 48 | W | 01_BPT_3 | | 181 | | | FD RPD | Failed | | | | | | | | | | | | LabDuplicate RPD | | | | | D | | | | | | | Failed, | | Copper, Total | | | Physis E-8059 | 04 BBT 44 | | | | | LD RPD, | FieldDuplicate RPD | | (µg/L) | Water | 48 | W | 01_BPT_14 | | | 61 | | FD RPD | Failed | | | | | | | | | | | | LabDuplicate RPD | | | | | D | | | | | | | Failed, | | Copper, Total | 147 - | | Physis E-8059 | 04 DDT 0 | | • | | | LD RPD, | FieldDuplicate RPD | | (µg/L) | Water | 48 | W | 01_BPT_3 | | 34 | | | FD RPD | Failed | | Copper, Total | | | Physis E-8082 | | | | | | | | | (µg/L) | Water | 49 | W | 01_BPT_6 | | 36 | 27 | | FD RPD | FieldDup RPD Failed | | | | | Physis E-8059 | | | | | | | | | Iron, Total (µg/L) | Water | 48 | W | 01_BPT_3 | | 55 | | | FD RPD | FieldDup RPD Failed | | | | | | | | | | | | LabDuplicate RPD | | | | | | | | | | | | Failed, Upper Limit | | | | | | | | | | | | due to analyte found | | | | | | | | | | | LD RPD, | in blank, | | Lead, Dissolved | | | Physis E-7132 | 01T_ODD2_DC | | | | | U, FD | FieldDuplicate RPD | | (µg/L) | Water | 44 | W | Н | | | 55 | | RPD | Failed | | | | | | | | | | | | LabDuplicate RPD | | | | | | | | | | | | Failed, Upper Limit | | | | | | | | | | | | due to analyte found | | | | | | | | | | | LD RPD, | in blank, | | Lead, Dissolved | | | Physis E-7132 | | | | | | U, FD | FieldDuplicate RPD | | (µg/L) | Water | 44 | W | 03_UNIV | | 44 | 34 | | RPD | Failed | | | | | | | | | | | | LabDuplicate RPD | | | | | | | | | | | | Failed, Upper Limit | | | | | | | | | | | | due to analyte found | | | | | | | | | | | LD RPD, | in blank, | | Lead, Dissolved | | | Physis E-8014 | 01T_ODD2_DC | | | | | U, FD | FieldDuplicate RPD | | (µg/L) | Water | 45 | W | Н | | <i>55</i> | 24 | | RPD | Failed | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |---------------------------|--------|-------|--------------------|------------------|-------------------|---------------------|-------------------|-------------------|-------------------------|---| | Lead, Dissolved
(μg/L) | Water | 45 | Physis E-8014
W | 04D_VENTURA | | | 56 | | LD RPD,
U, FD
RPD | LabDuplicate RPD Failed, Upper Limit due to analyte found in blank, FieldDuplicate RPD Failed | | Lead, Dissolved | Water | 45 | Physis E-8014
W | 9AD_CAMA | | | 43 | | LD RPD,
U, FD
RPD | LabDuplicate RPD Failed, Upper Limit due to analyte found in blank, FieldDuplicate RPD Failed | | Lead, Dissolved | | | Physis E-8016 | - | | | | | | LabDuplicate RPD | | (µg/L)
Lead, Dissolved | Water | 45 | W
Physis E-8027 | 01_BPT_14 | | | 126 | | LD RPD | Failed | | (µg/L) | Water | 46 | W | 04_WOOD | | 141 | 0 | 0 | FD RPD | FieldDup RPD Failed | | Lead, Dissolved
(μg/L) | Water | 47 | Physis E-8042
W | 01T_ODD2_DC
H | | | 157 | 1 | LD RPD,
FD RPD | LabDuplicate RPD Failed, FieldDuplicate RPD Failed LabDuplicate RPD | | Lead, Dissolved
(µg/L) | Water | 47 | Physis E-8042
W | 03_UNIV | | 125 | | | LD RPD,
FD RPD | Failed,
FieldDuplicate RPD
Failed | | Lead, Dissolved
(μg/L) | Water | 48 | Physis E-8059
W | 01_BPT_14 | | | 107 | | LD RPD,
U, FD
RPD | LabDuplicate RPD Failed, Upper Limit due to analyte found in blank, FieldDuplicate RPD Failed | | Lead, Dissolved | Water | 48 | Physis E-8059
W | 01_BPT_3 | | 108 | | | LD RPD,
U, FD
RPD | LabDuplicate RPD Failed, Upper Limit due to analyte found in blank, FieldDuplicate RPD Failed | | | | | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | | |-------------------------------|--------|--------------|--------------------|------------------|------------|--------------|------------|------------|-------------------------|--| | Constituent | Matrix | Event | Lab Batch | Site | RPD | RPD
| RPD | RPD | Qualifier | Comments | | Lead, Dissolved | | | Physis E-8082 | | | | | | | | | (µg/L) | Water | 49 | W | 01_BPT_6 | | | 104 | | | | | | | | | | | | | | | Upper Limit due to | | Lead, Dissolved | | | Physis E-8083 | 01T_ODD2_DC | | | | | | analyte found in | | (µg/L) | Water | 49 | W | Н | | 35 | 13 | | U | blank | | Lead, Total
(µg/L) | Water | 44 | Physis E-7132
W | 01T_ODD2_DC
H | | | 71 | | LD RPD,
U, FD
RPD | LabDuplicate RPD
Failed, Upper Limit
due to analyte found
in blank,
FieldDuplicate RPD
Failed | | Lead, Total
(µg/L) | Water | 44 | Physis E-7132
W | 03_UNIV | | 40 | 60 | | LD RPD,
U, FD
RPD | LabDuplicate RPD
Failed, Upper Limit
due to analyte found
in blank,
FieldDuplicate RPD
Failed | | Lead, Total
(µg/L) | Water | 45 | Physis E-8014
W | 9AD_CAMA | | | 57 | | LD RPD,
U | LabDuplicate RPD
Failed, Upper Limit
due to analyte found
in blank | | Lead, Total | | | Physis E-8059 | | | | | | | | | (µg/L) | Water | 48 | W | 01_BPT_3 | | 121 | | | FD RPD | FieldDup RPD Failed | | Lead, Total | Water | 49 | Physis E-8082
W | 01_BPT_6 | | 54 | 7.5 | | FD RPD | FieldDup RPD Failed | | (µg/L)
Manganese, | vvalti | 49 | Physis E-8027 | 01_DF1_0 | | 34 | 7.0 | | FUKFU | ו ופוטטעף אדט דמוופט | | Dissolved (µg/L) | Water | 46 | W E-0021 | 04_WOOD | | 108 | 0 | 1 | FD RPD | FieldDup RPD Failed | | Manganese, | 774(0) | 10 | Physis E-8059 | <u> </u> | | ,,,, | | • | | . isiabap iti b i alloa | | Dissolved (µg/L) | Water | 48 | W | 01_BPT_3 | | 104 | | | FD RPD | FieldDup RPD Failed | | Selenium, | | - | Physis E-8014 | | | - | | | | LabDuplicate RPD | | Dissolved (µg/L) | Water | 45 | W | 9AD_CAMA | | | 47 | | LD RPD | Failed | | Selenium, | | | Physis E-8016 | | | | | | | LabDuplicate RPD | | Dissolved (µg/L) | Water | 45 | W | 01_BPT_14 | | | 162 | | LD RPD | Failed | | Selenium,
Dissolved (µg/L) | Water | 48 | Physis E-8059
W | 01_BPT_14 | | | 31 | | U | Upper Limit due to
analyte found in
blank | | | | | | | BS/
BSD | Field
Dup | Lab
Dup | MS/
MSD | Program | | |--------------------------------|-------------|-------|--------------------|------------------|------------|--------------|------------|------------|--|--| | Constituent | Matrix | Event | Lab Batch | Site | RPD | RPD | RPD | RPD | Qualifier | Comments | | Selenium, | | | Physis E-8082 | | | | | | | | | Dissolved (µg/L) | Water | 49 | W | 01_BPT_6 | | 0 | 43 | | | | | Selenium, Total | | | Physis E-8016 | | | | | | | LabDuplicate RPD | | (µg/L) | Water | 45 | W | 01_BPT_14 | | | 108 | | LD RPD | Failed | | Selenium, Total | | | Physis E-8059 | | | | | | | | | (µg/L) | Water | 48 | W | 01_BPT_3 | | 60 | | | | | | Silver, Dissolved | | | Physis E-7137 | | | | | | | | | (µg/L) | Water | 44 | W | 01_BPT_14 | | 36 | 29 | | FD RPD | FieldDup RPD Failed | | Silver, Dissolved
(µg/L) | Water | 45 | Physis E-8016
W | 01_BPT_14 | | | 50 | | LD RPD,
U | LabDuplicate RPD
Failed, Upper Limit
due to analyte found
in blank | | Silver, Total | | | Physis E-8014 | | | | | | | | | (µg/L) | Water | 45 | W | 9AD_CAMA | | | 67 | | | | | Strontium, | | | Physis E-7132 | 01T_ODD2_DC | | | | | | | | Dissolved (µg/L) | Water | 44 | W | Н | | | | 69 | | | | Strontium,
Dissolved (µg/L) | Water | 45 | Physis E-8014
W | 01T_ODD2_DC
H | | 0 | 1 | 39 | MS >UL,
EST
MS/MSD | MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | Strontium, | · · · · · · | | Physis E-8083 | 01T_ODD2_DC | | | · | | MS <ll,
MS >UL,
EST</ll,
 | MS failed lower limit,
MS failed upper limit,
Estimate due to RPD
failure between | | Dissolved (µg/L) | Water | 49 | W | H | | 1 | 1 | 39 | MS/MSD | MS/MSD | | Thallium, | | | Physis E-7132 | | | • | | | | | | Dissolved (µg/L) | Water | 44 | W | 03_UNIV | | 40 | 40 | 1 | | | | Thallium,
Dissolved (µg/L) | Water | 45 | Physis E-8014
W | 01T_ODD2_DC | | 86 | 22 | · · · | U | Upper Limit due to analyte found in blank | | Thallium,
Dissolved (µg/L) | Water | 46 | Physis E-8027
W | 04_WOOD | | 80 | 29 | | U | Upper Limit due to analyte found in blank | | Thallium,
Dissolved (µg/L) | Water | 49 | Physis E-8083
W | 04D_VENTURA | | | 67 | 0 | | | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |-------------------------------|--------|-------|--------------------|------------------|-------------------|---------------------|-------------------|-------------------|------------------------------------|--| | Thallium, Total | | | Physis E-7132 | | | | | | | | | (µg/L) | Water | 44 | W | 03_UNIV | | 67 | 0 | | | | | Thallium, Total
(µg/L) | Water | 45 | Physis E-8014
W | 01T_ODD2_DC
H | | 40 | 0 | | U | Upper Limit due to
analyte found in
blank | | Thallium, Total
(µg/L) | Water | 45 | Physis E-8014
W | 9AD_CAMA | | | 40 | | U | Upper Limit due to
analyte found in
blank | | \(\frac{1}{3}\) | | | Physis E-7137 | - | | | | | | | | Tin, Total (µg/L) | Water | 44 | W | 01_BPT_14 | | 34 | | | | | | Tin, Total (μg/L) | Water | 46 | Physis E-8027
W | 04_WOOD | | 13 | 48 | | | | | Tin, Total (µg/L) | Water | 47 | Physis E-8042
W | 03_UNIV | | 133 | | | | | | Titanium,
Dissolved (µg/L) | Water | 49 | Physis E-8083
W | 01T_ODD2_DC
H | | 8 | 2 | 35 | MS <ll,
EST
MS/MSD</ll,
 | MS failed lower limit,
Estimate due to RPD
failure between
MS/MSD | | Zinc, Dissolved | | | Physis E-7137 | | | | | | | | | (µg/L) | Water | 44 | W | 01_BPT_14 | | 92 | 17 | | FD RPD | FieldDup RPD Failed | | Zinc, Dissolved (µg/L) | Water | 46 | Physis E-8027
W | 04_WOOD | | 47 | 5 | 2 | FD RPD | FieldDup RPD Failed | | Zinc, Dissolved
(µg/L) | Water | 47 | Physis E-8042
W | 03_UNIV | | 63 | | | U, FD
RPD | Upper Limit due to
analyte found in
blank, FieldDup RPD
Failed | | Zinc, Dissolved
(µg/L) | Water | 48 | Physis E-8059
W | 01_BPT_3 | | 65 | | | U, FD
RPD | Upper Limit due to
analyte found in
blank, FieldDup RPD
Failed | | Zinc, Dissolved (µg/L) | Water | 49 | Physis E-8082
W | 01_BPT_6 | | 33 | 24 | | FD RPD | FieldDup RPD Failed | | Zinc, Total (µg/L) | Water | 44 | Physis E-7137
W | 01_BPT_14 | | 33 | 22 | | FD RPD | FieldDup RPD Failed | | Constituent | Matrix | Event | Lab Batch | Site | BS/
BSD
RPD | Field
Dup
RPD | Lab
Dup
RPD | MS/
MSD
RPD | Program
Qualifier | Comments | |--------------------|--------|-------|---------------|----------|-------------------|---------------------|-------------------|-------------------|----------------------|-------------------------------------| | | | | D | | | | | | =5 | Upper Limit due to analyte found in | | | | | Physis E-8059 | | | | | | U, FD | blank, FieldDup RPD | | Zinc, Total (µg/L) | Water | 48 | W | 01_BPT_3 | | 46 | | | RPD | Failed | | | | | Physis E-8082 | | | | | | | | | Zinc, Total (µg/L) | Water | 49 | W | 01_BPT_6 | | 62 | 9 | | FD RPD | FieldDup RPD Failed | BS/BSD = Blank Spike/Blank Spike Duplicate MS/MSD = Matrix Spike/Matrix Spike Duplicate RPD = Relative Percent Difference Table 3. Accuracy QA/QC Issues | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |-----------------------------------|----------|-------|--------------------------------|-----|-----|--------------|---------------|-------------|--------------|--|--| | General Water
Quality | | | | | | | | | | | | | Total Hardness (calc) (mg/L) | Water | 45 | Physis E-8014 W | 70 | 130 | | | 14 | 4 | MS <ll, est<br="">MS/MSD</ll,> | MS failed lower limit,
Estimate due to RPD
failure between
MS/MSD | | Nutrients | | | | | | | | | | | | | Ammonia as N
(mg/dry kg) | Sediment | 44 | Physis C-18033
W | 70 | 130 | | | 131 | 128 | | | | Ammonia as N
(mg/dry kg) | Sediment | 44 | Physis C-18037
W | 70 | 130 | | | 137 | 131 | | | | Total Kjeldahl
Nitrogen (mg/L) | Water | 45 | Associated_QC1
151080_W_CON | 80 | 120 | | | 320 | 310 | MS >UL | MS failed upper limit | | Total Kjeldahl
Nitrogen (mg/L) | Water | 46 | Associated_QC1
151859_W_CON | 80 | 120 | | | 69 | 83 | MS <ll< td=""><td>MS failed lower limit</td></ll<> | MS failed lower limit | | OC Pesticides | | | | | | | | | | | | | DDE(p,p') (ng/dry g) | Tissue | 49 | Physis O-7130 W | 50 | 150 | | | 194 | | | | | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |-----------------------------|----------|-------|-----------------|-----|-----|--------------|---------------|-------------|--------------|--|--| | DDE(p,p') (ng/dry g) | Tissue | 49 | Physis O-7132 W | 50 | 150 | | | -24 | 81 | | | | DDE(p,p') (ng/dry g) | Tissue | 49 | Physis O-7134 W | 50 | 150 | | | 24 | 66 | | | | DDE(p,p') (ng/dry g) | Tissue | 49 | Physis O-7148 W | 50 | 150 | | | -12 | 942 | MS <ll, ms="">UL,
EST MS/MSD</ll,> | MS failed lower limit,
MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | DDT(o,p') (ng/dry g) | Sediment | 44 | Physis O-6088 W | 50 | 150 | | | 54 | 47 | | | | DDT(p,p') (ng/dry g) | Sediment | 44 | Physis O-6068 W | 50 | 150 | | | 67 | 49 | LD RPD | LabDuplicate RPD
Failed | | DDT(p,p') (ng/dry g) | Sediment | 44 | Physis O-6088 W | 50 | 150 | | | 48 | 31
| | | | DDT(p,p') (ng/dry g) | Tissue | 49 | Physis O-7148 W | 50 | 150 | | | 159 | 218 | MS >UL, EST
MS/MSD | MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | Endosulfan I (ng/dry
g) | Water | 49 | Physis O-7130 W | 50 | 150 | 14 | 16 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan I (ng/dry
g) | Water | 49 | Physis O-7132 W | 50 | 150 | 14 | 17 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan I (ng/dry
g) | Water | 49 | Physis O-7134 W | 50 | 150 | 18 | 20 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan I (ng/dry
g) | Tissue | 49 | Physis O-7134 W | 50 | 150 | | | 46 | 79 | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan II (ng/dry
g) | Water | 49 | Physis O-7130 W | 50 | 150 | 33 | 32 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan II (ng/dry
g) | Water | 49 | Physis O-7134 W | 50 | 150 | 34 | 40 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Endosulfan II (ng/dry
g) | Tissue | 49 | Physis O-7132 W | 50 | 150 | | | 34 | 56 | | | | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |-------------------------------------|----------|-------|-----------------|-----|-----|--------------|---------------|-------------|--------------|--|--| | Endrin (ng/dry g) | Tissue | 49 | Physis O-7130 W | 25 | 125 | | | 149 | | | | | Endrin (ng/dry g) | Tissue | 49 | Physis O-7134 W | 25 | 125 | | | 117 | 127 | | | | Endrin, Total (µg/L) | Water | 47 | Physis O-7042 W | 25 | 125 | 125 | 132 | | | | | | Methoxychlor (ng/dry g) | Sediment | 44 | Physis O-6088 W | 50 | 150 | | | 54 | 29 | | | | PCBs | | | | | | | | | | | | | PCB 149 (ng/dry g) | Tissue | 49 | Physis O-7132 W | 50 | 150 | | | 47 | 39 | | | | PCB 149 (ng/dry g) | Tissue | 49 | Physis O-7134 W | 50 | 150 | | | 55 | 43 | | | | PCB 153 (ng/dry g) | Tissue | 49 | Physis O-7132 W | 50 | 150 | | | 86 | 175 | | | | PCB 194, Total
(μg/L) | Water | 44 | Physis O-6066 W | 50 | 150 | 163 | 139 | | | | | | PCB 209 (ng/dry g) | Tissue | 49 | Physis O-7134 W | 50 | 150 | | | 48 | 39 | | | | OP Pesticides | | | | | - | | | | | | | | Azinphos methyl
(Guthion) (µg/L) | Water | 45 | W4K0927 | 0.1 | 154 | | | 140 | 167 | | | | Chlorpyrifos (ng/dry g) | Water | 49 | Physis O-7130 W | 50 | 150 | 27 | 32 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | | | | | | | | | | | | | | Chlorpyrifos (ng/dry g) | Water | 49 | Physis O-7132 W | 50 | 150 | 27 | 37 | | | BS <ll, est<br="">BS/BSD</ll,> | BS failed lower limit,
Estimate due to
BS/BSD RPD failed | | Diazinon (µg/L) | Water | 48 | W5B0473 | 36 | 153 | | | 155 | 141 | | | | Ethoprop (µg/L) | Water | 44 | W4H0315 | 40 | 153 | 132 | 173 | | | | | | Fensulfothion, Total (µg/L) | Water | 46 | Physis O-7016 W | 50 | 150 | 60 | 45 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Malathion (ng/dry g) | Sediment | 44 | Physis O-6072 W | 50 | 150 | | | 142 | 151 | | | | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |----------------------------|----------|-------|-----------------|-----|-----|--------------|---------------|-------------|--------------|--|--| | | | | | | | | | | | | | | Mevinphos, Total
(μg/L) | Water | 44 | Physis O-6082 W | 50 | 150 | 29 | 55 | | | BS <ll, est<br="">BS/BSD</ll,> | BS failed lower limit,
Estimate due to
BS/BSD RPD failed | | Mevinphos, Total (μg/L) | Water | 47 | Physis O-7042 W | 50 | 150 | 43 | 56 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Mevinphos, Total
(μg/L) | Water | 48 | Physis O-7060 W | 50 | 150 | 51 | 45 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Naled (μg/L) | Water | 45 | W4K0927 | 0.1 | 242 | | | 248 | 239 | | | | Phorate, Total (μg/L) | Water | 49 | Physis O-7094 W | 50 | 150 | 47 | 50 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Phosmet (µg/L) | Water | 44 | Physis O-6066 W | 50 | 150 | 54 | 45 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Phosmet (ng/dry g) | Water | 44 | Physis O-6088 W | 50 | 150 | 51 | 49 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Phosmet (ng/dry g) | Sediment | 44 | Physis O-6072 W | 50 | 150 | | | 158 | 164 | | | | Phosmet, Total (µg/L) | Water | 44 | Physis O-6066 W | 50 | 150 | 54 | 45 | | | BS <ll< td=""><td>BS failed lower limit</td></ll<> | BS failed lower limit | | Ronnel (µg/L) | Water | 48 | W5B0473 | 29 | 153 | | | 156 | 147 | | | | Stirophos (µg/L) | Water | 45 | W4K0927 | 0.1 | 167 | | | 141 | 183 | | | | Trichloronate (μg/L) | Water | 48 | W5B0473 | 40 | 150 | | | 156 | 146 | | | | Triphenyl phosphate (μg/L) | Water | 45 | W4K0927 | 40 | 163 | | | 135 | 166 | | | | Pyrethroid
Pesticides | | | | | | | | | | | | | Allethrin (μg/L) | Water | 45 | W4K0781 | 0.1 | 222 | | | 227 | 261 | | | | Bifenthrin (ng/dry g) | Sediment | 44 | Physis O-6072 W | 50 | 150 | | | 150 | 173 | | | | Cyfluthrin (µg/L) | Water | 49 | W5E1327 | 11 | 214 | | | 325 | 352 | | | | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |--|--|----------------------------|---|----------------------------|---------------------------------|-------------------------|------------------------|----------------|--------------|--|--| | Cypermethrin (µg/L) | Water | 49 | W5E1327 | 20 | 206 | 7011001 | 7011001 | 289 | 320 | <u> </u> | | | Deltamethrin/Tralome
thrin (µg/L) | Water | 49 | W5E1327 | 0.2 | 230 | | | 243 | 269 | | | | Fenvalerate/Esfenval erate (µg/L) | Water | 49 | W5E1327 | 32 | 193 | | | 308 | 330 | | | | Pendimethalin (µg/L) | Water | 45 | W4K0781 | 8 | 203 | | | 197 | 233 | | | | Pendimethalin (µg/L) | Water | 49 | W5E1327 | 8 | 203 | | | 212 | 208 | | | | Permethrin (µg/L) | Water | 49 | W5E1327 | 37 | 209 | | | 266 | 286 | | | | Permethrin, cis- (µg/L) Permethrin, cis- (ng/dry g) Permethrin, cis-, Total (µg/L) Permethrin, trans-, Total (µg/L) Prallethrin (µg/L) Metals and | Water Sediment Water Water Water Water | 44
44
46
49
45 | Physis O-6066 W Physis O-6072 W Physis O-7024 W Physis O-7094 W W4K0781 | 50
50
50
50
11 | 150
150
150
150
247 | 37 57 162 | 82
45
139 | 171 229 | 176
260 | BS <ll, est<br="">BS/BSD
BS <ll< td=""><td>BS failed lower limit,
Estimate due to
BS/BSD RPD failed</td></ll<></ll,> | BS failed lower limit,
Estimate due to
BS/BSD RPD failed | | Selenium | | | | | | | | | | | | | Iron, Dissolved (μg/L) | Water | 44 | Physis E-7132 W | 75 | 125 | | | 137 | 119 | | | | Iron, Dissolved (μg/L) | Water | 48 | Physis E-8055 W | 80 | 120 | | | 119 | 138 | MS >UL | MS failed upper limit | | Mercury, Dissolved (μg/L) | Water | 46 | Physis E-6102 W | 75 | 125 | | | 133 | 133 | MS >UL | MS failed upper limit | | Silver, Dissolved
(µg/L) | Water | 45 | Physis E-8014 W | 75 | 125 | | | 78 | 73 | | | | Strontium, Dissolved (µg/L) | Water | 44 | Physis E-7132 W | 75 | 125 | | | 238 | 116 | | | | Constituent | Matrix | Event | Lab Batch | LCL | UCL | LCS
%Rec. | LCSD
%Rec. | MS
%Rec. | MSD
%Rec. | Program
Qualifier | Comments | |---|--|---------|-----------------|-----|------|--------------|---------------|-------------|--------------|--|--| | Strontium, Dissolved (µg/L) | Water | 45 | Physis E-8014 W | 75 | 125 | | | 372 | 250 | MS >UL, EST
MS/MSD | MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | Strontium, Dissolved | \\/_t | 40 | • | 7.5 | 405 | | | 20 | 20 | MC II | MC failed laws a limit | | (μg/L) Strontium, Dissolved | Water | 46 | Physis E-8027 W | 75 | 125 | | | 30 | 29 | MS <ll< td=""><td>MS failed lower limit</td></ll<> | MS failed lower limit | | (μg/L) | Water | 48 | Physis E-8055 W | 75 | 125 | | | 263 | 330 | MS >UL | MS failed upper limit | | Strontium, Dissolved (µg/L) | Water | 48 | Physis E-8055 W | 75 | 125 | | | 228 | 187 | MS >UL | MS failed upper limit | | Strontium, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | 75 | 125 | | | 34 | 46 | MS <ll, ms<br="">>UL, EST
MS/MSD</ll,> | MS failed lower limit,
MS failed upper limit,
Estimate due to RPD
failure between
MS/MSD | | Strontium, Dissolved (µg/L) | Water | 49 | Physis E-8083 W | 75 | 125 | | | 327 | 221 | MS <ll, ms<br="">>UL, EST
MS/MSD</ll,> | MS failed lower limit,
MS failed upper limit,
Estimate due to
RPD
failure between
MS/MSD | | Sumithrin | \/\/=t== | 40 | • | 40 | 0.47 | | | 057 | 204 | | | | (Phenothrin) (µg/L) Titanium, Dissolved | Water | 49 | W5E1327 | 12 | 247 | | | 257 | 291 | | | | (µg/L) | Water | 44 | Physis E-7132 W | 75 | 125 | | | 168 | 135 | | | | Titanium, Dissolved | Water | 49 | Physis E-8083 W | 75 | 125 | | | 59 | 66 | MS <ll, est<br="">MS/MSD</ll,> | MS failed lower limit,
Estimate due to RPD
failure between
MS/MSD | | LCL = Lower Control Lim UCL = Upper Control Lim MS = Matrix Spike MS = Matrix Spike Duplic LCS = Laboratory Control LCSD = Laboratory Control %Rec = Percent Recove | nit
cate
ol Spike
rol Spike Du _l | plicate | | | | | | | | | | ### A COOPERATIVE STRATEGY FOR RESOURCE MANAGEMENT & PROTECTION October 2, 2015 Electronic Submission: losangeles@waterboards.ca.gov California Regional Water Quality Control Board, Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, California 90013 Attn: Dr. Celine Gallon Subject: Comments on the Staff Report and tentative Board Resolution for the 2014-2016 Triennial Review Dear Dr. Gallon: The Stakeholders Implementing Total Maximum Daily Loads (TMDLs) in the Calleguas Creek Watershed (Stakeholders) appreciate the opportunity to provide comments on the California Regional Water Quality Control Board, Los Angeles's (Regional Board) 2014-2016 Triennial Review to consider and adopt a list of the highest priority issues regarding water quality standards for the Los Angeles Region (Triennial Review). In the Triennial Review the Regional Board determines and prioritizes potential revisions to the Water Quality Control Plan for the Los Angeles Region (Basin Plan). The Stakeholders consist of agricultural, wastewater, and MS4s that are responsible parties to six effective TMDLs in the Calleguas Creek Watershed (CCW). Five cities (Camarillo, Thousand Oaks, Simi Valley, Moorpark, and Oxnard), unincorporated Ventura County, and the Ventura County Watershed Protection District are all MS4 permittees within the CCW that must comply with the TMDLs to comply with the NPDES MS4 permit for Ventura County (Ventura MS4 Order). In March 2015, the Stakeholders submitted a comment letter on the Request for Data and Information on Water Quality Standards for the Triennial Review. In that letter, and as noted in Table 5 of the staff report, the Stakeholders requested two issues be prioritized for consideration in the Triennial Review: 1) TMDL reconsideration for a number of local TMDLs, and 2) the further development and incorporation of natural source exclusions to improve the accuracy of water quality standards. Upon review of the Triennial Review Staff Report, the Stakeholders would like to provide further comments on the following issues: ### Comment #1: The Staff Report notes under Section 5, Potential Projects Identified by Staff, the update of ammonia objectives based on recommended criteria issued by the Environmental Protection Agency (EPA) in 2013. The Stakeholders encourage the Regional Board to focus the resources that would be allocated on this criteria review on other priorities. As the majority of wastewater treatment plants that discharge to inland surface waters in the Los Angeles Region have upgraded their treatment to remove ammonia, ammonia toxicity in most receiving waters has been reduced to such an extent that the Stakeholders do not feel that limited resources should be prioritized for the ammonia criteria review. Previously issued EPA criteria have not merited Basin Plan revisions. For example, the 2007 USEPA copper criteria has not been subject to the sort of assessment as is proposed for the ammonia criteria. If the Regional Board moves forward with consideration of the criteria, a careful examination of its application in the waters of Southern California will be required. The revised ammonia criteria was structured around designating standards that are protective of freshwater mussels, which have been identified as the most sensitive aquatic life receptor. However, scientific literature has noted that freshwater mussels are, and likely have been, extirpated from the waters of Southern California', Coney notes freshwater mussels are, "undoubtedly extirpated from all of Southern California'. The USEPA criteria notes that "unionid mussel species are not prevalent in some waters, such as in the arid west." In the 2009 draft version of the USEPA criteria, EPA had proposed a mussels present and mussels absent criteria to acknowledge the lack of freshwater mussels in some waterbodies. While the 2013 criteria did not maintain this distinction, it will be critical for the Regional Board to consider deriving site-specific applications of the criteria. The 2013 USEPA criteria discusses the derivation of site-specific criteria and includes an appendix discussing the procedures for developing the criteria (Appendix N). Should the Regional Board pursue this evaluation, it should include consideration of developing site-specific criteria in accordance with Appendix N. . ¹ Howard, J.K., J.L. Furnish, J.B. Box, S. Jepsen. 2015. The decline of native freshwater mussels (Bivalvia: Unionoida) in California as determined from historical and current surveys. California Fish and Game 101 (1):8-23. ² Coney, C.C. 1993. Freshwater Mollusca of the Los Angeles River: past and present status and distribution. The blota of the Los Angeles River: an overview of the historical and present plant and animal life of the Los Angeles River drainage. C1-C22. ### Recommendation: Deprioritize the update of freshwater ammonia objectives based on the EPA's 2013 criteria and allocate those resources to other higher priority projects. #### Comments #2: While Table 7 of the Staff Report states that work on a high flow suspension in Ventura County was not highlighted as a priority by commenters, the Stakeholders have in previous opportunities voiced support for this concept, and still are in strong support of this work and feel that it is a high priority for the Triennial Review. As the State Water Resources Control Board (State Board) is currently developing a Statewide Bacteria Policy which will include consideration of high flow suspension, we encourage the Regional Board to include the Bacteria Policy as a State Board program it will support during this Triennial Review. This support could include moving forward from work already done on high flow suspension in Ventura County, with a goal of incorporating high flow suspensions consistent with the statewide policy. Implementation of a high flow suspension will allow resources to be focused on protecting recreational beneficial uses where and when they actually occur as conditions during storm events are unsafe for recreation and compliance with objectives is temporarily unachievable. #### Recommendation: Prioritize support for the State Board's Statewide Bacteria Policy in this Triennial Review cycle, and conduct further work started on high flow suspension in Ventura County as part of that support. ### Comment #3 The Stakeholders would like to thank the Regional Board for including TMDL support as a priority project during this Triennial Review period. The Stakeholders have previously submitted comments outlining needed modifications to a number of local TMDLs to improve their effectiveness and better align their requirements with the most recent scientific knowledge gained during their implementation. We look forward to working with you on these TMDL modifications. #### Recommendation: As a Triennial Review priority, ensure that Regional Board staff provide support to the TMDL program as needed to improve its effectiveness, including efforts such as the requested TMDL reconsiderations. Thank you for your time and consideration of these comments. If you have questions, please contact me at (805) 388-5334 or lmcgovern@cityofcamarillo.org Sincerely. Lucia McGovern Title h MEEKEN Chair Stakeholders Implementing TMDLs in the Calleguas Creek Watershed ## county of ventura PUBLIC WORKS AGENCY JEFF PRATT Agency Director Destral Services Department J. Tabin Costo, Director June 27, 2016 Engineering Services Department Harbert L. Behwind, Orocto Transportation Department David L. Fleisch, Director Water & Sandamus Department Michaela Brown Director > Watershed Protection District Tully K. Clifford, Owedor Kangshi Wang, Ph.D. California Regional Water Quality Control Bourd Los Angeles Region Standards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subject MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Maldau Creek and Lagoon Bacteria TMDL (LMDL) Compliance Monitoring Plan (CMP) for the month of May 2016. Sites were sampled weekly on Tuesdays (May 3, 10, 24 and 31), except for one instance wises sites were sampled on Wednesday (May 18) due to staffing conflicts. Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomesus were calculated using results from the previous 30 days (actual sampling date marked with •). Weeks with wet weather samples (collected less than 72 bours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean Italf the detection limit was used for the purpose of calculating the daily geomesis for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal poliform monitoring has been discontinued, as approved by the Las Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact me at
(805) 645-1382. Sincerely. Jowelina Mutkowska County Stormwater Program Manager, Watershed Protection District CC: Tully Clifford, Watershed Protection District Paul Jorgensen, City of Thousand Oaks (via email) Joe Bellomo, Willdan Associates (via email) Kelly Fisher, City of Agoura Hills (via email) Allen Ma, County of Los Angeles (via email) Table 1. Weekly sampling results | | | | | | the fleet and | |-------------|------|-------------|----------|-----|---------------| | Laterstrik | Firm | 33/6 | II Hills | | \$non | | | | | | | (215 (1205) | | MEW-William | | 47577010.4 | | | Nity. | | MCW-80 | | 5/10/2016+ | | | Pry | | MCW-lb | | 5/15/2054+ | | | Dry | | MCW-88- | | 5/24/20164 | | | Dry | | MCW-85 | | 3/31/2016+ | | | They | | MCW-9 | | 5/3/2016+ | | H | Day | | MC30-9 | | 5/10/20164 | | П | Day | | MCRA | | 5/19/2016+ | | | Day | | MICW-9 | | 5/24/2016* | | | Ditt | | MESSEA | | 5/31/2016+ | | | | | 360W-12 | | 15/5/2016+ | 1 | | 13/y | | WETGETT | | 5/10/20164 | | | Div | | MCW-12 | 1 | 5/18/2016+ | | - | Dw | | 900000112 | | 5/24/2016# | | | Doc | | METWELL | | 1/53/2016+ | | | | | MCW-166 | 1025 | 5/5/20104 | = | H | 300 | | MCW-140 | 025 | 5/10/2016# | - | 1=1 | 30 | | MCW/Mb | 940 | 5/18/2016+ | _ | | 300 | | MCW-186 | 815 | 5/24/2016 m | | | 170 | | MCW 140 | 850 | 5/31/20164 | | - | - 40 | | | 100 | | | | | | MCW 15c | 950 | 5/3/2016+ | | 100 | .10 | | MCW-151 | 853 | 2/10/26/6× | | 3.1 | 26 | | ME70V-15c | 900 | 5/1n/2016* | | 100 | 80 | | MCW-15e | 740 | 9/24/20/16+ | | | - 461 | | MCW-05c | 810 | 5/31/2016* | - | = | 80 | | MCNOTE | | 5/3/2016 | | | Dry | | 36CW-13 | | 5710/2019 # | | | Dire | | M/DW-15 | | 5/19/2016* | | | Dire | | MEWID | | 5/24/0014 | | | Dex | | MEW 17 | | 1/31 20114 | | | Dec | | 590297-10 | | 3/3/20164 | | | Dry | | 55070738 | | 5/10/2016+ | | | Dev | | MCW-18 | | 5/18/20160 | | | Do | | 54(7W) 18 | | 5/24/2056+ | | | Dire | | All/ravale | | :1/31/2016+ | 1 | | Dec | ^{*} The SWO(N) granted parameter or replace our MF 20 15b with the Spound 05 (tentrons MCW-15c) on August 11ds, 2010 Convert sampling Table 2. Computation of daily geomean | | | | | and a state of the control co | | | | | | | |------------|----------|------------|-------|--|-----------|------------|--|--|--|--| | industrial | V. Dinti | Date | Merin | | E,E | 1.74 | | | | | | | 100 | | FA | | E3 80(80) | (12) 31234 | | | | | | MCXW/Bb | 1-00 | -3/1/2014 | Day | 100 | 10 | 10 | | | | | | MCW-Wh | | 3/2/2016 | Diri | 9 | 19 | Ili | | | | | | activists | 1 | 5/3/2016 • | Din | red. | 100 | 10. | | | | | | ACMOUNTS. | 100 | 5/4/2000 | Dey | | - 10 | 10. | | | | | | 60,787-810 | | 5/3/2016 | Dep | | 10 | 1.0 | | | | | | dCW/86 | | -5/6/2016 | Dep | -0 | 10 | 10. | | | | | | 6CW-86 | +-3- | 5/7/2016 | Deg | 16. | 10 | -10 | | | | | | (CW-6b | - | 5/8/2016 | Day | 140 | - 10 | 10. | | | | | | 4CW-85 | 100 | 5/9/2014 | Dry | 167 | 10 | 10 | | | | | | 4C/W-56 | | 5/1072016+ | Dry | 8 | 10 | 10 | | | | | | ACW-66 | - | 3/11/2016 | Day | 10 | 10 | 10 | | | | | | ACWAS - | 1 | 5/12/2016 | Diry | 4 | 10 | tri | | | | | | 4C/W-85 | | 5/13/2016 | Thy | × | -10 | 16 | | | | | | 4CW/85 | | 5/14/2016 | Thry | 3 | 10 | 10 | | | | | | ALW-85 | | 5/15/2016 | Dyy | 100 | 10 | ψū | | | | | | 6CW-85 | | 5/10/2016 | Day | 5 | 10 | - 10 | | | | | | ACW: 85 | 1 | 5/17/10til | Thy | 10 | 70 | 10 | | | | | | ACTW-dis | The same | 5/19/2016+ | Day | H | -40 | TOL | | | | | | 07.W: 86 | | \$/10/2006 | Llyy | 4 | 10 | Ţu- | | | | | | 6CW/-Eh | | 5/20/20th | Fley | HC. | 10 | ATT: | | | | | | (CVF 5b | 100 | 5/21/2016 | Deg | 140 | 10 | 10 | | | | | | (CW-86) | | 5/22/2018 | Day | 3 | in. | 107 | | | | | | (III WITH | | 5/23/2016 | Dep | 坚 | 140. | 10 | | | | | | M.W.85 | | 3/24/2016◆ | Dry | nt. | 10- | 10 | | | | | | (C50) (8b | 1 | 5/25/2016 | Day | ×. | 19 | - 10 | | | | | | KOW-No. | - | 5/28/2016 | Diri | ×. | (IS | -10 | | | | | | (CW-86 | 4.0 | 5/27/2016 | Diy | 4, | 10 | 10 | | | | | | tCW-bb | | 5/28/2016 | Dry | K | 10 | 10 | | | | | | CW-Fp | 1.5 | 5/29/2016 | Do | 4. | 10 | :10 | | | | | | (CW/ab | 1 | 5/30/2016 | Day | 30 | 10 | 10 | | | | | | ICW-85 | 100 | 5/31/20364 | Do | T. | 30 | 19 | | | | | | ALW: 9 | 1.0 | 5/1/2016 | Dig | 3. | 1.0 | 10 | | | | | | UCW/4 | | 4/3/2016 | 1329 | 4. | -30 | 10 | | | | | | 的W-E | | 5/5/2016+ | Deg. | R. | 1.0 | 10 | | | | | | CWA . | 1136 | 1/4/2016 | Day | 3 | In | 19 | | | | | | 6C9F-9 | | 5/5/2010 | Dry | 35 | .10 | 10 | | | | | | (CW-II | | 5/6/2016 | Dry | 4 | 316 | 10 | | | | | | 60:301.9 | 100 | 577/2016 | Dev | 3 | An . | 10. | | | | | | ACW-4 | | 3/8/2016 | Dig | 4. | - 200- | 10 | | | | | | ACTOV A | | 3/9/2016 | De | | 16 | 1,0- | | | | | | OCAFAL. | | 5/10/2016+ | Div. | 4 | 34) | 10 | | | | | | ACW 9 | 700 | 5/11/2016 | Div | W., | 18. | 10 | | | | | | ACM/A | | 5/12/2014 | Dry | 5 | 16 | 10 | | | | | | ALC:NO HE | 100 | 5/13/2014 | Day | 16 | 10 | Lu. | | | | | | | Cabalan | | | | | | |------------|----------|--------------|--------------|------|----------|----------| | 14 H/m | Ton | j.) | - Iran | | 76-74 | - I mile | | | | | | | (20,80%) | L=AUPA | | 500,07-0 | | 5/14/2016 | Day | 4 | 10 | 10 | | MCW-N | | 5/15/2010 | Diry | 4 | :16 | 10 | | MCW/0 | 1 | 5/16/2015 | 12m | 30 | -17 | 100 | | MLW- | See July | 1/11/2mg | Ore | 40.1 | (t) | 107 | | MCW-F | 1 - 1 - | 5718/2010 • | Day | 4.1 | 19 | 10 | | MC007.0 | | 5/19/200b | Day | 2 | 19 | 10 | | MCWA | | 3220/2016 | - Zhe | 40.7 | 19 | (0) | | MCWA | 1 7 | 3/21/2016 | Chy | 3.1 | TP - | -10 | | MCW-9 | 130 | 5/22/2016 | Dig | Æ. | 10' | 10 | | MCW-3 | 1 | 1723/2016 | Lity. | 2. | 10 | (0 | | MCW/F | | 3/24/2016* | Dry | | (ii | 10 | | MEWI | 100 | 5/25/2016 | Doy. | -0. | 10 | 10 | | 345W F - | | 1/26/2014 | Elty | 12. | 40 | 10 | | MEW# | | 5/27/2010 | Dity | 7.1 | 16 | | | MUTW-9 | | 3/28/2016 | Dity | 30 | .10 | 10 | | MENDO | - | 3/29/28hs | Lay | 4 | 49 | 10 | | MCW/F | 100 | 1/30/2016 | Dity | K. | .70 | .10 | | MCW-F | | 3/31/2010# | Ditt | -C | 10 | 10. | | MCW-12 | 134 | 5/1/2010 | Day | < | 19. | 10 | | MCW-32 | 1.5 | 5/2/2016 | Dies | -0. | th | 10 | | MCW-12 | 100 | 5/3/2016# | Uni | M. | .10 | 10 | | MCW/12 | 54.1 | 5/4/2016 | Do | 8 | 10 | 10 | | MCW.12 | | 5/5/2016 | 230 | 16 | Aŭ | 10 | | MCW-12 | | 5/6/2016 | Om | 1-4 | 90' | 111 | | MCW-12 | | 5/7/2016 | Do | 4 | -10 | 30 | | MICST-12 | | 5/8/3016 | Dhy | 76.5 | 10 | 101 | | 181 181-12 | | A/9/2016 | Filer | | , kū | 10 | | MUW-II | _ | 5/(0/20tile | Thy. | < | to | In- | | MEW-12 | - | 3/11/2014 | Urs | | 10 | 10 | | | - | | | < 1 | | 10 | | MCW-12 | 1 | 5/12/2014 | Diy | | 10 | 10 | | AICWE-12 | | 5,513,72014 | Dry. | 40 | 10 | 10 | | MEWAL | 1 | 5/14/2016 | Div. | 30 | 10 | 10 | | MCW 12 | 1 | 3/15/2016 | De- | < 1 | 10 | 911 | | NU.W-12 | 191 | 35,091,500# | Dip | | in | | | MCW/12 | - | 5/17/2010 | Diy | × | 10 | AU- | | 加快。详 | 17540 | 8/18/2016 • | De | < | 40 | Łä | | MCW-12 | | 5/19/2014 | 13 <i>iy</i> | 40 | 10 | 10 | | MCW-12 | 1 - | 3/20/2016 - | Dej | - | · m | M | | MC9/42 | | 5/21/2016 | Diff | 4 | (0) | (\$- | | NEUW-12 | | 5/22/2006 | Lity | 10 | 10 | 12 | | MCW-II | | 3723/2019 | Lity | 91 | -10 | - JA | | MEDICAL T | | 3/34/2010+ | Diy | | 10/ | 13.0 | | MCW-12 | 1 | \$/35/2/// 6 | Div | | 10 | 11 | | MC WILL | | 1/24/2010 | Day. | 10 | 36 | 10 | | | | | | 1934 | marite and a
magnificant puts and
SO() | Scource. | |-----------------|--------|-------------|-------|------|--|--------------| | La canado | Time | Thin | -hala | | | E-0/40 | | | | | | -1- | (setations) (| griji Miller | | MCW 13 | | 5/27/2010 | Dig | 3 | 10 | 10 | | NICW-12 | 11.3.1 | 572872008 | Dey | 4 | =01 | 10 | | 24K7W-12 | - 1 | 5/29/2010 | Dn | 4 | 10 | 10 | | MICW/12 | | 5/30/2014 | Liv | 16 | IV. | 10 | | MCW/12 | | 5/31/2016+ | Dry | 5 | 10- | 10 | | MCW/14b | 990 | 575/2010 | | 4 | 1300 | 679 | | MCW-146 | 900 | 4/2/2016 | | | (300 | 701 | | MCW-14bi | 1025 | 3/3/2016 e | | = | 300 | Yot | | MCW-14b |
1025 | 5/4/2016 | | | 500 | 705 | | MCW-14b | 1025 | 5/5/2010 | | 4 | 500 | 736 | | 58CW/ (14b) | 1025 | 5/6/2014 | | = 1 | 500 | 70 | | MCW/196 | 1025 | 5/7/2016 | | 41 | NO2. | 780 | | MC90-1-0s | 1025 | 5/8/2016 | | - | 500 | 805 | | MCW-946 | 1025 | 5/9/2016 | | 4 | 500 | 0.97 | | MCW-No | 925 | 3/10/20164 | | 4 | 00 | Biá | | 60C5V-7.kb | 925 | 5/11/2016 | | -1 | 80 | 797 | | MCW 196 | /025 | 5/12/2016 | | | 180 | 750 | | MK/W-14b | 925 | 5/11/2014 | | - | -80 | 709 | | MCW/J46 | 928 | 5/14/2016 | | | 180 | 664 | | MCSP-1965 | 925 | 5/15/2016 | | | 41 | 525 | | MCW-Use | 925 | 5/10/2016 | | | 30 | 348 | | MCW-beb | 925 | 5/47/2014 | | 0. | 30 | 553 | | MCW-16 | 940 | 5/16/2016 • | | | .900 | -543 | | MCW-UB | 0.40 | 5/19/301A | | | 3/00 | 507 | | MCW 1/b | 740 | 5/20/2018 | | - | 100 | F73 | | MCW445 | 0.40 | 5/21/2016 | | = - | 300 | MI | | Sec. Wi-146 | 940 | 3/22/2016 | | | 300 | 412 | | MCW14b | 940 | 5/23/2016 | | * | 100 | 584 | | MCW-14b | 815 | 5/24/2016+ | | 84 | 170 | 382 | | MCW/106 | 815 | 5/25/2010 | | | 120 | 322 | | MCW-146 | 515 | 5/26/2016 | | - | 170 | . 301 | | WCW/146 | 815 | 5/27/2016 | | | 170 | 281 | | st/1307 (HILD - | B15 | 5/28/2016 | | | ISTN. | 263 | | 44, VE. 14h | 915 | 5/29/2016 | | | (10) | 245 | | MCW-146 | 815 | 5/30/00)4 | | | 178 | 229 | | VDCVV-140 | 850 | 5/57/2016 • | | | | 30 | | MCW/13c | 000 | 5/1/2016 | | A | 500 | 391 | | MCW-15c | 1900 | 5777770/16 | | | 500 | 302 | | WCW-15c | 950 | 5/3/2016 × | | - | 70 | 325 | | WCW 15c | 950 | 3/4/2016 | | 4 | 76- | 1937 | | WCW-tric | 950 | -5/5/2014 | | * | 70 | - 20A | | VOCANIA Se | 950 | 3/8/2016 | | | 70 | 77.0 | | | | | | 1 | The set of the Green's cutters. | Winnerson. | |-----------|--|--------------------------|--------------|------|---------------------------------|------------| | HERON- | 11.00- | - Dara | than | | Alian
Land
Vancologi | Fu All | | MCW 15c | 950 | -5/7/2016 | | 41 | 70) | 263 | | MCW-15 | 950 | 5/8/2014 | | 1=1 | 70 | 255 | | MCW-the | 950 | 5/9/2016 | | 10. | 70: | 247 | | MCW-15c | 850 | 5/30/2016# | | 37 | 20 | 220 | | MCW/25c | 850 | 5/41/2016 | | | 20 | 200 | | MCW-15c | 850 | 5/12/2014 | | | 20 | 206 | | MCW-15c | 650 | 5/15/2016 | | | 20 | 191 | | MCW-154 | 650 | 5/10/2016 | | 34 | 20 | 289 | | 887W-15c | 850 | \$41572016 | | | 29 | 281 | | M17W/15c | 850 | 5/16/2016 | | | 20 | 174 | | MCW/45c | 850 | The second second second | | 3 | | 167 | | | 900 | 5/17/0016 | | | .20 | | | MCW 15c | A CONTRACTOR OF THE PARTY TH | 3/18/38/6* | | | 80 | 108 | | MCW/15c | 900 | 5/14/3014 | | 4 | .10 | - 151 | | 50.7F-(5c | 900 | 5/20/2016 | | 3 | 90 | 157 | | MLW-150 | 900 | 5/21/2/06 | | 2 | 80 | 198 | | WECW-150 | 000 | 5/22/2014 | | 2 | - 60 | 312 | | MCW-15c | 200 | 5/23/2016 | | 3 | 80 | 103 | | MC3W-13c | 740 | 573473036+ | | * / | 46 | 84 | | MCW-15t | 740 | 5/25/2016 | | W. | #0 | 78 | | MCW-15c | 740 | 5/26/2016 | | 9.7 | 40 | 12 | | MCW-15c | 740 | 5/27/2016 | | =- | 40 | 04 | | MCW-15c | 740 | 5/28/2016 | | * 1 | 60 | 61 | | MCW-15c | 749 | 5/79/2016 | | | 40 | 31 | | MICW/18c | 740 | 5/30/2016 | | 10.1 | -60 | 57 | | MCW-15c | 810 | 5/31/2016+ | | 9.1 | 60 | 41 | | MEMAT | | 5/1/2016 | Dev | 8 | 10 | No. | | MCW-11 | - | 5/7/2014 | They | 150 | 10 | | | MP.797-51 | _ | 3/3/2018 | Day | 40 | 10 | 10 | | MCW 17 | - | - \$/4/2016 · | 110 | | 10 | 1 | | MC9611 | - | 5/5/2016 | Day | 96 | 10 | in in | | MONIT | - | 574/2010 | De: | 15. | -10 | 10. | | MOWAT | - | 5,77/2016 | John . | 3 | 10 | 70 | | MCW-14 | - | 5/8/2016 | Dey | 8 | 10 | - 15 | | MCW 17 | | - 5/9/2010
F/F/2010 | Dn | 100 | 10 | 10 | | NGEW/11 | | 3/10/20164 | Do | 4 | 102 | m | | MCM-17 | | 5/43/2016 | Diry | < | 10 | 10 | | MODW-17 | | 5/13/2016 | Day | 5 | 10 | 10 | | NOTWAY | | 5/14/2010 | 1259 | < | 10 | 10 | | MEMO. Y7 | | 3/19/2016 | illey
Sim | - | 10 | 10 | | MCW 17 | - | 3/16/2016 | De | 2 | 10 | 10 | | MCW/17 | | 3/17/3/16 | Dig | 8 | 10 | 40 | | MICHALL | | 5/18/22/54 | Day | | 10 | 10 | | SICK, IT | | 573972000 | Dn | | 10. | £0 | | | | | | | pageonal community descript
NEW | -fittalin | |------------|-------|-------------|----------------|-----|------------------------------------|------------| | I dellino- | Londo | - 15 AC | Паш | | 07 (6.4) | ALXIII. | | | | 100 | | | 22 (SteN) | - (MADDAN) | | MCW/TT - | | 5/20/2016 | Dec | 100 | 19 | 10 | | MCW/17 | | 5/21/2016 | Diry | 3 | .10 | 10 | | 54E/W-17 | | 5/22/2016 | Div | 1 | 10 | 10 | | AMCTWD-17 | | 5/25/2016 | Fire | 40 | 400: | 10: | | MONSTY | | 5/24/2016.4 | Dig | 3 | 10 | (A | | MCWAI | | 9/25/2016 | 170 | -0. | 76 | 70 | | 2M87W-12 | | 5/26/2010 | Day | w | 10 | 10 | | MCW-17 | | 5/27/2016 | Dix | | 10 | 16 | | MCW-17 | | 5/28/2016 | Dig | 100 | (0) | 10 | | MCW-17 | | 5/29/2016 | Dist | 16 | 10 | 10 | | MCW-17 | | 5/30/2016 | Dev | 140 | 10 | 10 | | MCW42 | | 5/31/2010+ | Day | 100 | 16: | 70 | | MCW-18 | | 5/1/2016 | Div | 1 | lú . | 10 | | MCW/18 | | 5/7/2016 | Day | 6 | 16 | 10 | | MCW-18 | | 5/3/2016+ | Day | 1 | 30 | 10 | | 20CW-18 | 1 | 5/4/2016 | Dwy | 160 | 301 | 10 | | MCW-18 | | 3/3/2016 | Day | 100 | 10 | 10 | | MCW-16 | | 5/8/2016 | Thy | 1 | 10 | lú: | | MCW/th - | | 5/7/2016 | Dir. | 100 | 10 | 10 | | MCW-18 | | 5/8/2016 | Orig | 10 | 10 | 10 | | MCMC48 | | 5/9/2016 | Ches | 100 | 10 | 10 | | ARTOLINE | | 5710/2016# | Em | - | 10 | 10. | | W7.W-18 | | 3/11/2016 | Dw | 8 | 10 | 10 | | MCW 18 | | 5/12/2014 | Dec | 18 | (0 | 10 | | MEWSH. | | 5/10/2014 | D ₀ | 7 | 10 | 10 | | MCW-18 | | 5/14/2006 | Day | Ŧ | 18 | (0) | | MC9/.18 | | 8/15/2014 | Dec | 4 | 19 | - 10 | | MCW-IA | | 5/16/2/04 | Do | 40 | 10 | 30 | | MCW-18 | 1 | 5/17/2016 | Day | 40 | 10 | 10. | | MC.W-18 | 100 | 5/18/2016 • | Day | -4. | 10 | .10. | | MC90-48 | | 5/19/2016 | Doy | 4 | 10 | 10 | | MCW-HI | | 5/20/201a | Dry | 4 | te . | 10 | | MCW-18 | 5-3 | 5/21/2016 | Doy | 4 | 10 | 10 | | MCW-18 | 9.0 | 5/22/2014 | Dey | | 10 | 10 | | MCW-YE | 100 | 5/21/2016 | Den | 16 | 10 | 10- | | SMCW-III | | 3/24/2016.6 | Dyy | 4 | 10 | 1,0 | | MOW TH | 1.0 | 5/25/2016 | Dry | 1 | 10 | 10 | | MOWNE | - | 5/26/2016 | Der. | 4 | 100 | 10 | | 50CW-14 | 150 | 5/27/2016 | Dir | 16 | 10. | 20 | | MCW-L6 | | 572872016 | Dec | 4 | 10 | hit. | | MCW-III | | 5/30//2000 | 13mg | < | 301 | 10 | | MICW 48 | - | 3/30/2016 | Dey | 1 | 10 | - 10 | | MCW-III | | 3/31/20084 | Liry | | 1.0 | 40. | Wolst will not went to complete to the second for the property of the property when the property went to the property with the property will be a property of the Burned Characteristics and half to both period to be made to the groups. ^{*} New WAQCO ground promote in exception are IRCM 190 well are appeared by Green a MCW 190 to freque 11 to 10 III. Albert of the regions. # county of ventura PUBLIC WORKS AGENCY JEFF PRATT Agency Director > Welensted Prosection District Tuilly M. Clifford, Director Transportation Department David L. Fleisch, Director Engineering Services Department Herbert L., Setwind, Director Went & Saniston Department David J. Sanak Director Central Services Department Janice E. Yuman, Director May 23, 2016 Kangshi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDt, Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of April 2016. Sites were sampled weekly on Tuesdays (April 5, 12, 19 and 26). Sites without results reported were not sampled due to instafficient flow and are labeled "Dry." Daily geomeans were calculated using results from the provious 30 days (actual sampling date marked with*). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain
single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal coliform monitoring has been discontinued, as approved by the Los Angeles Regional Water-Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent, approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact me.at (805) 645-1382 Sincerely, Ewolina Mutkewska MANGON County Stormwater Program Manager, Watershed Protection District. CC: Tully Clifford, Watershed Protection District Paul Jorgensen, City of Thousand Onks (via email) Joe Bellomo, Willdan Associates (via email) Kelly Fisher, City of Agoura Hills (via email) Allen Ma, County of Les Angeles (via email) Table 1. Weekly sampling results | | | | | - 10 | e le Sangle
L'unionité d' | |----------------|------|---------------|------|------|------------------------------| | Long p | Thur | -Our | Bala | | Attack) | | | 100 | | | | CHARLES | | MCW-SD | | 1/5/2004 | | | Dec | | MC 01-46s | | 4/12/2016 # | | | Chry | | 547,700-8th | - | 4/19/2016+ | | | thry | | MCW-III. | | 4/20/2016+ | | | Dim | | MC788-8 | | 4:5/2mp+ | | H | Ün | | MCW/9 | | 4/12/2016+ | | | Day | | M00W/# | 1 | #/19/2/06 h : | | | ther | | MCW 4 | | 4/26/2016+ | | | Day | | hirow-că | | 4/5/2000 | | | On | | aliCW-12 | | 4/12/2016 4 | | | C)ry: | | MCW-IZ | | ±/19/2016 ◆ | | | Lay | | AICW-IT | | 4/36/2010+ | | | Thy | | Married I also | 915 | a/5/2ma-a | | | 370 | | MCW-1 to | 855 | 4/12/20164 | | - | 500 | | 64.2 W. Lide | 900 | 4/19/2016 e | | | 2,400 | | NOTAL JAI | 940 | 4/25/2010. | | - | 1,300 | | selow rae | 840 | 1/5/2016 € | | _ | 179 | | METALLE | 815 | U12/2016+ | | = | 71 | | MIDW De | 820 | 4/19/2016 a | | | 1,790 | | MUNITE . | 900 | 4/26/20104 | | 9 | 360 | | MEN/37 | | 4/1/2016+ | | | Day | | MCW:II | | 4/12/2016+ | | | Day | | 36CW-17 | | 4/19/20064 | | | Dire. | | MICW-17 | | 1/20/2014 | | + | Day | | NUCVIA | | 17.5020116+ | | | Terr. | | ARCHE LE | | 4/12/2014 4 | | | Dec | | MCW218 | | 4/4/2/2016 # | | | Lin | | MCWath | 100 | 4/20/2005 | | | Day | Printer. * 1 Set (CV) QUALITY STATE A CONTRACT OF THE SET OF [#] Dans of mary Neg Table 2. Computation of daily geomean | | | est Day Ray | | The state of | number sample | Covernment | |------------|------------|-------------|------|--------------|---------------|------------| | Literation | 1 These | | Raid | | Leo. 3 | Bu mylle | | | 1 | 100 | | | (034 51985) | (EW Appea) | | AIICW-III | | 4/1/2016 | Dhy | < | 10 | 10 | | MKTW-86 | J. Free L. | 4/3/3016 | Dity | - | 16 | 10 | | GHOWN BY | | 4/3/2006 | Dn | 4 | 10 | -10 | | MCW 86 | | 4/4/2016 | Day | - I | 10 | 10 | | MCW-8s | | 14/5/20164 | Dep | 4 | 10 | 10 | | MCW-88 | | 4/6/2014 | Dig | - | 10 | - (1) | | MCW-85 | | 477/2016 | Day | - | 10 | 90 | | MCW/86 | | 4/8/2014 | Dex | 4. | 10 | 10. | | MCW-85 | | 4/9/2016 | Dry | 10-17 | 10 | 10 | | MIC/Walls | | +/10/2010 | Dry | | 10 | 10 | | MCW W | 150 | W/3/1/2004 | Dep | 10 | til | 10 | | MCW-IIb | | 4/12/2016+ | Diry | 4 | 10. | 10 | | MCW 50 | | 4/11/2010 | Dey | 10.1 | 10 | 10 | | MENNE | | H/14/2006 | Dig | (4) | FÓ | 10 | | MICW-Bh - | | 1/15/2010 | Dity | + | rd . | 10 | | MCW-96 | - | 4/16/2016 | Dir | 40 | 10 | 80 | | MCW-lb. | | A/11/2016. | Dry | 18 | to | . FO | | MCW 45 | | 4/18/2016 | Dry | 40. | 10 | 10 | | MCDV Je | 100 | 1/19/2016+ | Dry | 4 | 10 | 10 | | MCW-8by | | 4/20/2016 | Do | 42 | 40 | 10 | | MCW-66 | Land I | 4/21/2016 | Day | (0) | 10 | 10 | | MICW/50 | | */IZZ/2018 | Day | 6 | 10 | 10 | | WLW 3h | | 4/23/2016 | Day | (4.) | 10 | 10- | | MCW/Mb | - | 4/24/2016 | Day | 10 | 10 | 16 | | WEW, His | | 4/25/2011 | Dry | e l | 10 | 10 | | VXCVV-05 | Lich | 4/26/2014+ | Dvy | 0 | - 10 | 10 | | M/JW-8% | | 4/27/2006 | Deg | 10 | 10 | 19 | | MX.79F-Bla | | 4/28/2016 | Ury. | -6. | 10 | 10 | | WCW20b | | 6/29/2016 | Day | 4. | 10. | tit - | | MEW 46 | | A/56/2010 | Dep | 41 | XII. | 19 | | MCW 9 | | 1/1/2016 | Dn | 4. | 10. | th | | MCW-s | | 4/2/2016 | Drg | 9 | - lu | 10 | | MCWA | | A/3/2016 | 12er | oit L | 10 | tú | | MCWA | | 4/4/2016 | Day | 41 | 10 | 10 | | AME; NO.00 | | 4/5/20164 | Dis | 41 | 10 | tú | | MERCH | | 4/6/2016 | Dit | 40.1 | 10 | - 01 | | MCW-9 | 500 | 4/7/2016 | De | 4. | 10 | tú | | MICRO | | W/8/2016 | Div | 41 | 10 | 10 | | orchold - | | 4/9/2019 | Day | 31. | 10 | 10 | | MCW-b. | - | 4/10/2016 | Dry | 4 | 10 | 10 | | M/2007 H | - | 4/11/2016 | Day | | 10 | 10 | | MCWA | | 4/12/2016+ | Do | | 10 | -10 | | M178/+ | | Littledia. | Day | 7 | 10 | 101 | | MICHAELE | 1 | 4714/2016 | Dry | 407 | 10 | 10 | | h Louish | | tur . | | (=m | maghinings
oped for a floridge and MOO | Genengan | |-----------|------|-----------------------|-----------------|------|---|----------| | | Hou | | Dian | | Evel | 1. 1987 | | | | | | | (23520DN) | 100.5000 | | MICWA | | 4/15/2019 | Deg | 4 | 10 | 10 | | 140794-9 | | 4/16/3mg | 12/9 | 4 | 10 | 10 | | MICWH. | 1500 | 4/17/2004 | Din | 74.1 | MI | 10 | | ME3W. 0 | 100 | 1/18/2016 | Day | 10 | 4.0 | .10 | | MCWH | 100 | 4/19/2016* | Liq | 76 | 10: | 30 | | MCW/II | 1 | 4/20/2016 | Thry. | 35 | - 10 | 10 | | MCW. | | 4/21/2016 | Der. | 40 | 10 | 18 | | MEWA | | 4/22/2016 | Deg | 4 | TIT. | 107 | | MCW/S | | 4/03/2016 | Diry. | 35 | 10 | 10 | | MLW-9 | 1 | 4/24/2016 | Dir | 45 | 10 | 10 | | ML39-9 | - | 4/25/2016 | Dg | -5 | 16 | 10. | | 5803879 | - | 4/26/2016+ | Dec | 76 | 210 | 40 | | MCWAI | - | 1/27/2016 | Dies | - | 96 | 10 | | MCW-9. | | 4/29/2016 | Dig | | . 10 | 10 | | MCW.II | 1 | 4/29/2016 | De | | 10. | 10 | | MCW/II | - | 4/30/2014 | Dig. | - | 100 | 40 | | WCW/12 | 1 | 4/1/2016 | Der | 5 | 10 | 40 | | MCWHILE - | | 4/2/2016 | Dry | 2 | 10 | 10 | | MCWSIZ | - | 4/1/2016 | Dep | 4 | 10 | 10 | | ACM IT | - | 1/1/2016 | Ling | 2 | 10 | 16 | | WCW-12 | | 1/5/2010+ | Dity | 4 | 10 | 10 | | WC98-3.E | | 1/6/2ins | Dity | 40 | 10 | .10 | | 907W-j2 | 1000 | 477/2016 | Day | 4 | 10 | 70 | | MCW42 | | 478/2816 | Dieg | 4 | 10 | 10 | | (CWHE- | | 4/9/2016 | Day | 15.7 | 10 | 16 | | VCW-12 | | 4/10/2016 | Dec | 4.1 | 10 | 115 | | 4CW-tr | | 4/11/2016 | Dvy | < | 10 | 10 | | MCW-LE | | 4/T3/2016+ | Day | w | 10 | 40 | | 4CW-12 | | 4/11/2016 | 1249 | 4 | 10 | (0) | | 60 W 12 | | 4/14/2016 | Dey | | 10 | 10 | | WCW 12 | - | 4/15/2016 | Dev. | 21 | 10 | 10. | | 49 00 12 | 1 | 4/16/2016 | Dig | 7 | to | 20 | | #2W.1E | | 4/1T/2016 | Day | 2 | 16 | 10 | | SCHWALE | | 4/18/2064 | Eles | | 10. | 110 | | | | | Toronto Carrier | | | 10 | | 407W+14E | | 4/19/2016#
4/2016# | Dg | S | . 10 | | | (C000) | - | 4/20/2014 | Day | -0 | 10- | 10 | | ICW-13 | - | 4/21/2016 | Der | 0 | 10 | 20- | | ICW-11 | | 1/22/2016 | Dry | 47 | .10 | 7.0 | | 0.39-12 | - | 4/23/2016 | Dig | 6.1 | 10 | 10 | | 4C#F51 | | 4/24/2018 | DW | 4 | ,tú' | -10 | | #CMF-12 | | 4/25/2015 | Day | 2 | 10 | - 00 | | ACW-12 | - | 4/28/2016# | Dig | 4. | iú | 310 | | 6CW 12 | | 4/27/2016 | Ditt | | 10 | 10 | | MCW-12 | | 4/38/3056 | Dis . | 50 | 10 | - 40 | | | | | | 10:50 | Sequencing to the Nove | - Unionean | | |--------------|------|-------------|---------|--------|------------------------|------------|--| | Counterin | Cont | Die | Maria I | | E/WII | R seli | | | | | | | La die | (223 MPN) | (III MPAN) | | | MCW/10 | | 4/29/2016 | Dry | <. | 20 | 23 | | | MCW-12 | - | 4/50/2016 | 120 | 30 | 16 | 32 | | | MCW/14b | 955 | 9/1/2006 | - | - 1 | 500 | 48 | | | MCW-100 | 955 | 9/2/2008 | | = 1 | 500 | 55 | | | MCW/14- | 953 | -4/5/2016 | | = 1 | 3(6) | 63 | | | Mr. W. 144 | 955 | 4/3/2006 | | | 500 | 72 | | | MCW51m | 955 | 4/5/2016 · | | | 170 | 79 | | | 4842-982368 | 915 | 1/4/2016 | | 10 | 370 | 86 | | | MK797-140s | 915 | 4/7/2016 | | 8. | 170 | 86 | | | MCW 14b | 913 | 8/8/2006 | | = | 179 | 85 | | | METW-14h | 915 | 4/9/2006 | 3 | -1 | 170 | 84 | | | MCW Lui | 915 | 4/10/2016 | | = | 170 | 83 | | | MCW/14b | 915 | 4/31/2016 | | 9 | 170 | 82 | | | MCW-146 - | 855 | +/12/2016+ | | -/- | 500 | 84 | | | MCW-345 | 155 | 4/13/2016 | | | 500 | 97 | | | MC377 14h | 855 | 4/14/2016 | | 100 | 500 | 94 | | | 66C WE 3 4b | 853 | 4/15/2014 | | = | 500 | 102 | | | W299-146 | 855 | 4/16/2016 | | 3 - | 500 | 111 | | | Media (46 | 855 | 9/17/2016 | - | | 500 | 121 | | | al Walsh | 855 | 4/18/2016 | | 100 | 500 | 132 | | | HE W. Lug. | 1000 | 3/19/22/164 | | ne l | 2,880 | 161 | | | VICTOR-145 | 900 | 1/20/2016 | | 600 | 2,400 | 173 | | | VICTOR'STATE | 900 | 4/21/2016 | | - | 2,400 | 304 | | | viCW-145 | 900 | 4/22/2016 | | -1 | 2,400 | 2547 | | | 67307-1405 | 500 | 4/23/2016 | | - | 2,400 | 300 | | | 6CW-14b | 1900 | 4/24/2016 | | | 2,400 | 360 | | | 6CW-14b | 100 | 4/25/2018 | | 4 | 2,400 | 432 | | | 0CW/14b | 940 | 4/26/2016+ | | 4 | 1,500 | 508 | | | 4C90165 | 940 | 4/27/2016 | | -1 | 1,360 | 597 | | | dCW/H0 | 940 | 4/28/2016 | | - | 1,300 | 617 | | | DDW-186- | 940 | 4/29/2016 | | - | 1,300 | 637 | | | ar:Wr. (48) | 940 | 4759/2010 | | 4 | 1,300 | 057 | | | JCVII-15c | 930 | 347172008 | | | 3,000 | SA | | | #TW/The | 920 | 1/2/2014 | | | 3,004 | 70 | | | ACWASS - | 920 | 4/3/2006 | | 4 | 3,000 | 84 | | | #CW/Ele | -920 | #/9/2016 · | | - | 3,000 | 102 | | | ACWL ISE | 840 | 4/3/2016* | | - | 179 | T12 | | | fCW/ His | 540 | 4/6/2008 | | - | 179 | 123 | | | ACW/The | 540 | 477/2016 | | = | 170 | 118 | | | 6000 15c | 840 | 4/8/2016 | | = | 170 | 112 | | | ecW (Sc | Mix | A/9/2016 | | | ¥70) | 107 | | | VCW PIE | 540 | 4/10/2016 | | 4 | 170 | 102 | | | Lateration | | Time | | (mthi | The state of the NDC | E. (12.309) | |-----------------------|------
--|------|-------|----------------------|-------------| | | Ture | | Dien | | - Proble | | | | 7 | | | 9. | GUSARN]. | | | MCW-15c | 640 | 4/31/2016 | | | 170 | 97 | | ME797-150 | 813- | 4/12/20164 | | 4 | 70. | (0) | | MCW-15c | 815 | 6/33/2613 | | | 70 | 85 | | MCTR-15c | 815 | A/24/2006 | | - | 10. | 37 | | NCW-19c | 615 | 4715/2016 | | = . | 70 | 95 | | MCW 15c | 815 | -1/76/2016 | | - | 70 | 791 | | MCW-15t | 815 | 4/17/2016 | | | 70. | 108 | | MCW-13c | 815 | 8/18/2016 | | | Tro | 115 | | MACDON-156 | 820 | 4/19/2014+ | | - | 6,700 | 137 | | MC781 15c | 820 | 4720/2018 | | =1 | 1,700 | 165 | | MCW-15c | 820 | 1/21/2015 | | - | 1,700 | 193 | | MCW-15c | 620 | 4/22/2016 | | 51 | 1,200 | 250 | | MCW-15c | 820 | 1/23/2016 | | - | 1,700 | 272 | | MICHA-13e | 820 | 4/24/2016 | | - | 1,700 | 322 | | | - | The state of s | | | | 363 | | MCW-15c | 820 | 4/25/2016 | | -75 | 1,700 | | | MCW-15s | 700 | 4/28/2016# | | | 500 | 436 | | MCW-15c | 900 | 4,727/2016 | | * | 500 | | | MCW-Hs | 900 | 4/28/2016 | | - | 500 | 465 | | oct/Walte | 900 | 4/29/2016 | | 3 | 500 | 441 | | MCW-15c | 500 | J/30/2014 | | 18 | 900 | 415 | | MCW 11 | | 4/1/2014 | Day | X. | 10 | 10 | | MCW-dT | | 4/2/2014 | Der | 10 | 10 | 10 | | MESERI | | 4/3/2016 | Drg | 9 | 101 | 10 | | MCW-II | 1 | 474/2016 | De | 34 | 10 | 10 | | MCW-dT | | 4/5/2016 • | Ger | 34- | 10 | 10 | | MOW 4T | - | ///(/2016 | Dig. | 3. | 10, | 10 | | MCW-IT | - | 4/7/2016 | Do | 4 | 10 | 10 | | MCW-ST
MCW-ST | | 4/11/2016 | Dire | 2 | 10 | - 10. | | 2005-00-17
2005-07 | | 4/9/2016-
1/10/2016 | Dec | 8 | 10 | 10. | | MESE-V2 | - | 47/15/2014 | Dire | 3 | 14.
14. | (2) | | M12W-17 | - | */\2/20\6# | Day. | 14 | 10 | 100 | | BM_W7-17 | | 4/13/2006 | -170 | 7 | 10: | 10 | | MC w/17 | | - 47,147,501g | Dig | | 10 | -10- | | MCW-17 | | 4/15/2019 | Dry | < | 10 | 10 | | MC:00-17 | | 1/11/2016 | Det | | 10 | 10 | | MCW-17 | | 4/17/2015 | Clip | < | 18: | 10 | | MCW-17 | 1 | 4/18/2016 | Day | Sel . | 19 | - 40 | | MCW-IT | | 4/19/20/64 | Day | 0 | -10 | 107 | | MCTW-17 | 1.5 | K/20/0016 | Day | 25 | 160 | 10) | | MC 00-17 | | 972172010 | Dep | No. | 16: | 101 | | MCW/II | | 4/32/2016 | Dig | 8 | 10 | -10 | | MUNIT | | 4/23/2010 | Dy | 30 | 16 | 0K | | MICAN'II | | 4/24/3016 | Des | | TO: | 30. | | Kinidan | | 1911 | | Andro | Aragide Emorgia
45-4 for mildy day = 11.78 day | - Osemen | |-------------|---------|--------------|--------|-------|---|-------------| | | Title ! | | Maller | Loon | | 3-01 | | | | | | | TALE MUNT | (tan Aspert | | MCW-I2 | | 4/25/2016 | Tay | 4 | 10. | 10 | | ME99-12 | | 4/28/2016 • | 1200 | | 10 | 10 | | MICW/17 | - | 4/27/2010 | Dr. | 300 | 10 | 10. | | MLTW-T | | 6/28/200m | Org | 6 | 10 | 10 | | MCW/17 | | 4/29/2018 | Dec | 41 | 50 | -10 | | JMCW-57 | | 14/30/2016 · | Ditt | 10.0 | 10 | 10 | | MCW:IN | | 471/2mm | Day | 4 | .50 | 10 | | METW/ va | | A/2/2018 | Day | 10. | 10 | 10 | | MC W 48 | - | 4/(3/201E | Day_ | 4 | tot . | 10 | | MCWHI | | 1/4/2016 | Day | 12.1 | 10 | 10 | | MICW-14 | | 4/5/2018+ | Dity | 100 | 101 | 10 | | 180707-18 | 1167 | 4/6/2006 | Dry | | 10 | 10 | | SICWH | - | 4/7/2016 | Dry | NEXT. | 1-0 | 16 | | 167W 16 | | 1/8/2006 | Diry | 21 | .10 | 10 | | MCW-18 | 1-5 | 4/9/2010 | Day | 100 | | 10 | | 50.78/16 | | 4/10/2016 | Din | K | re | 10 | | MC92.1d | | 4/13/2006 | Do | 4 | 10 | 10 | | 94CW-14 | T54/17 | H/12/2016◆ | De | 40 | 10. | .00 | | 34529233 | | 4/13/2006 | Dry | 4.1 | 10 | TQ | | MICON TIL | | 4/14/2016 | Dry | 10 | 10 | 107 | | MCW-10 | Today 1 | 4/15/2010 | Deb | TC | 10 | 10 | | MEWATE | 542 | -4/16/2018 | Dir | 15. | fit. | LO. | | MCW/18 - | | 4/17/2010 | 12m | 70 | 10 | 10 | | 560,000,000 | CALL | 4/18/2014 | Dir | No. | 10 | 50 | | MCW-IX | | 4/19/2016+ | Dep | >6 | - 19. | 10 | | MCW-18 | | 4729/2018 | Dry | 1 | 10 | in | | 560,787-18 | 4.7 | 4/21/2bts | Dev | 100 | 79. | 10: | | MCW-18 | | 4/22/2016 | Dry | -6 | 100 | 10 | | MI,W-18 | | 4/23/2016 | Day | 34 | tu | 10 | | MICWORK | | 4/24/2016 | Div | · C 1 | 10. | m | | M00W-18 | | 1/25/2010 | Day | 4 | 16 | 10 | | MCW-III | 5 | 4/26/3016+ | Dity | 7 | -10 | IV. | | MEWAIT | | 4/27/2016 | Day | | ro l | 10 | | MCWIE | | 4/28/2014 | Din | AL. | 101 | 10 | | MCWITE | | 4/29/2015 | Dire | 41 | - u | -10- | | MCWILL | | 4/50/2016 | Digy | 21 | 10 | 10 | We to subsemposition samples (referred to other 72 to us after a locally 20 ft read) would person a non-rain angle ample 200 to galaxies the particular interest of the particular partic ¹⁷ hr RWQCB grannil permission or explain are MCW 150 with our Ayeard 20 (remained MCW 15c) on August \$255,2000 [.] Date of sampling ## county of ventura PUBLIC WORKS AGENCY JEFF PRATT Agency Director April 12, 2016 Walandard Probection Detrict Tully K. Clifford, Oracles Transportation Decarment David L. Fleisch, Director Engineering Services Department Herbert L. Schwind, Director Water & Santabon Department David J. Sanak, Doncton Castral Services Department Jantice E. Turner, Director Kangahi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly munitoring effort required by the Malibu Crock and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of March 2016. Sites were sampled weekly on Tuesdays (March 1, 8, 15, 22 and 29). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with*). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken Feeal coliform monitoring has been discentinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and sobsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact me at (805) 645-1382. Singerely, weling Markowska County Stormwater Program Manager, Watershed Protection District CC- Tully Clifford, Watershed Protection District Paul Jorgensen, City of Thousand Oaks (via email) Joe Bellamo, Willden Associates (via email) Kelly Fisher, City of Agoura Hills (via email) Allen Ma, County of Los Angeles (via email) Table I. Weekly sampling results | | | | | | the marked | |------------|-------|-----------------|----------|-------|-------------| | Loposen | Tone | Dim | The line | i Ber | 1 24 | | | 1 | | | | (2)(8,55HM) | | MCW-ID- | | 373 / 2000 + | | | Dita | | MCW 80 | | 3/8/70ts+ | | | Livy | | MC#80 | - | 3/15/20164 | | | Dity | | MUW-No | | 3.722 13016 g | | | Diy | | MCW-E | | 5/29/20064 | | | Day | | MCW.F. | | 1/1/2016 | | Ħ | Der | | MCW/4 | | 1/8/3016# | | | Elipy - | | MCW | | A/15/2016+ | | | This. | | MCW.s | | 1/22/2014 • | | | 1200 | | MOVER | | 3/29/2019+ | | | Tity | | WOW 13 | 1000 | M/7/2016+ | + | - | 70 | | MCW.72 | 815 | 1/8-2016 · | Kain | | 1,400 | | MCW-2 | bito | 3713/20094 | 1 | | 40 | | MCW 12 | 1115 | 1/12/20164 | 1 | 12 | 201 | | NEIDW-12 | 1 | 2/29/20104 | | | Dec | | NEWSON CO. | -0130 | s /s' starana | - | | 230 | | MENU-tau | 745 | 3/1/3010+ | (Cian | - | 9,000 | | | 1/00 | 3/472046# - | 1 (1) | | 10 | | MCW-195 | 1020 | 3/23/2016+ | 1 | | 20 | | ALCOVATE | 1935 | 3/29/2016 | 1 | | -500 | | 200.00 | 1007 | -
SCHOOL MANAGE | - | | | | MCW-13= | 930 | 5/1/2010+ | 1 | 0 | 700 | | ALCW-156- | 739 | 1:00:2010+ | N/A | - | 149 | | MC2W 15e. | 1100/ | 5/15/2016* | | 8 | 20 | | MCW/35c | 915 | 5/22/2016# | | 18 | - 20 | | MCW/Ss | 1000 | 3/29/2016* | | 1.0 | 3,000 | | 341.97.17 | 1 | 471 2012 F | | | I'bra | | MCW-17 | | 378/2016+ | | | Day | | MICWOST | 1-1-1 | 3/15/2016 | | | Der | | Mornit | | 7/27:0000 | | | Toy | | MICANI | | 9729 (2016) | | | Dir | | NEW TE | - | 01/200 | | | Dhy | | MCW III | | 578/2018* | | | Dey | | MEMO.16 | | M/15/20/6# | | | :Fe | | MCW1# | | 3/22/2016* | - | | Dig | | NCW 19 | | 3/29/2016 | | | 10= | ^{*} The (DWC) Regretary promotions to express out 50° We) So ware one Special Characteristic MCW-150) was $\Lambda_{\rm MB}$ to 1100. h Dan or Commission Table 2. Computation of daily geomean | | | | | fortgate for the stage of s | | Germano | |--------------|---------|-------------|--------|--|---------------|--------------| | Complete . | Marine. | Line | Umay | | 92 (86 | E7240 | | | 7- | | | | (SEE ASSESSED | (His topped) | | MCW.Bu | | 27 (72016+ | : 35m | 140 | 10 | 10 | | MCW-85 | | 5/2/2010 | Dep | 100 | - 10 | - 10 | | MOWAE | | 13/3/2016 | Car | 10.1 | Ya | 10 | | 9(09/5) | | 3/4/2010 | - Dies | 147 | 10 | 10 | | MUDW-86 | - | 375/2010 | Dec | 1 | 10 | 10 | | MCWn60 | | 5/6/2010 | Erry | 100 | 10 | 10 | | MEW BO | - 710 | 3/7/2016 | Ove | 1.5 | 10 | 19 | | MCW-86 | | 3/8/2016+ | Dan | - | - 10 | 10 | | MIZWHE | - | 5/9/2016 | Diry | 10 | 10 | 10 | | MCW-86 | 11.5 | 2,410/2016 | Day | 10 | 10 | 70 | | MEW-MI- | - 3 - | 3/31/3016 | 1707 | - | 70 | 10 | | MCW-dis | | 3/12/2016 | Dry | 107 | an | 10 | | ME200-06 | | 371572076 | Deg | 100 | 10 | 10 | | MITW No | | 3/14/2020 | Dry | 3 | ro. | 40 | | VCW/so | | 1/55/3016+ | De | 100 | 10 | 10 | | E Wilds | | 3./10/2028 | 1200 | 9 | 10. | 1.0 | | MCW-86 | | 3/17/2010 | Day | | - 30 | 10 | | V0.70 - (0) | | 5/18/2019 | Dip. | (1) | 10 | to | | 679/1 | | 3/19-(2006) | bn | | iu - | 10 | | 60WH6 | | 3/20/2019 | Dig | 10. | 10 | 10 | | MEMORIE | | N/21/2010 | Dey | 4.1 | in | 10 | | VET NO. 1815 | 100 | 8/22/2016+ | Day | -31 | 10 | tu | | MCW-pb | | 3/25/2016 | Dry | | 10 | 10 | | dCW-m | | 1/24/2016 | Der | 13 | 10 | TU. | | 4/2W2.59 | - | 5/25/3018 | Day | . e | 10 | 10 | | 60W-68 | 100 | 3/29/2018 | Do | 34. | 10 | 10 | | 639496 | | 1/27/2016 | Dir | -8 | 18 | 10 | | 6CW-8b | | A/28/2005 | Dry | 344 | 10 | 10 | | 45 W. Sh | | 1729/2016 | Des | 1 | 10 | 10 | | m.Win. | 77.27 | 3,730,72030 | Dig | 2. | 10 | 101 | | CW4b | | 3/31/2010 | Dry | (4) | 10 | 10 | | MCSV-0 | | 1/1/30194 | Des | 4 | 10. | 10 | | MC90.9 | | 1/2/2016 | Div | 20 | 10 | - 16 | | 01070010 | | 175/2008 | Lin | 5-4 | - 10 | 10 | | MCMP8 | | 1/4/2014 | ESty | 76 | EQ . | - 11/ | | MENO.0 | | 3/3/2006 | Diy | | n | 10 | | MEMIN | | 3/6/2016 | Div | al . | LIF. | - 18 | | MC TE O | | 3/3/2018 | Day | 10 | III. | - 10 | | MCW V | | 1/4/2016+ | Dur | 1 | 10 | 417 | | METUD.+ | | 16/0/2016 | Live | | 10 | 10 | | MCWAII | 140 | 3/10/2010 | Div | 4 | 10 | 10 | | (F)(E/III | | 3/11/2016 | Din | 7 | 10 | 30 | | COM-W | | 571272016 | Dry | | 10 | Ath. | | W.70v | | 1/11/2010 | Dry. | 4 | 10 | 10 | | MITWEN ! | | 1/14/2016 | -Din | 4 | 10 | 10 | Hall of Administration L # 1600 | | | | | * latter | diskip minima and Mirel | Grandan. | |-------------|---------|----------------|-------|----------|-------------------------|--------------| | 4_тщ | Time | Dure | The | | | 9 - 40 | | | | | | | SAMPAPAS. | 200000000 | | MIC/W = | | 3/15/2006 • | Dry | 40 | 0); | | | MLAN = | | 3/16/2019 | Im: | 4 | - 10 | 100 | | PECAN I | | 4717/2078 | Lin | | 90 | - Vir | | MCW-F | | 3737/2014 | -Dh | 42 | 10 | 1,0 | | MEW | 1.7.1 | 73,115,201E | The . | | 10 | | | MC30-9 | | 3/20/2016 | Diy | 20 | 10 | 10 | | MCW/# | | 3/25/2016 | Day | | AU | 10 | | MEWA | | 3/22/2010 + | Par. | 146 | 10 | - 11 | | PRESSOR - | | 5/35/7616 | 1309 | 100 | 1.0 | | | MEW(B) | 1 | 3/39/29/1 | Do | -40 | - 40) | 1917 | | MUDW/9 | 1 | 3/23/2010 | Dry | | 10 | 10 | | MICANA | | 3/28/2010 | Chir | 76 | Tr | 3.0 | | Mr. Wast | 1715 | 3/27/2014 | 22qr | -40 | 10 | 10 | | MUW-M | - | 3/28/2010 | Ditte | 15 | Tri: | - III | | MCW/8 | 1 | 3/29/2016+ | Dry | 185 | 107 | -10 | | WIN-9 | | AF50/2010 | Do | 40.0 | 107 | 111. | | MOCOW.9 | 1 | N/11/2014 | Dec | 2 | -10 | - 10 | | WC9-17 | 7000 | CLC1/280TB# | | T | 79 | - 3 | | WCW-II- | 1000 | 1/2/3010 | | 3 | 70 | 74 | | MOF IT | 37000 | 5/5/3016 | | 3 | 70 | - 75 | | W-12- | 1000 | 5/4/2010 | | 20 | 20 | 70 | | 10年(1 | 71100 | 3/3/3006 | | | 70 | 45 | | TE-WIN | 1,000 | 5/6/2800 | | | 30 | 76" | | ACM II | 1000 | 3/7/2018 | | 4 | 70 | - Williams | | 0.00041 | 815 | 3/8/2016* | Reto | | - Marian | -14 (min) 14 | | WITH IT | 815 | 5,417,9713 | Man | | Att aures | , segments | | 0.79/14 | 815 | 371073016 | Ran | | W. Range | ##Bantt | | 07.300 14.5 | 815 | 373179004 | II.m | | **10.000** | Tellian Pf | | UC167-12 | -815 | 1/12/2014 | B.a. | | **Hame** | indigener | | ACMETE. | 615 | 3/13/2010 | Bain | - | and and a | 1000 | | | | | | | - 1 | | | MCNV-LE- | 900 | A/14/20M | Run | | 40 | *** | | 4CW-)2 | 1000 | 3/15/20164 | | = | | (3) | | AC(99-12) | 900 | 3/16/2010 | | 3 | 40 | jR . | | (UW) IZ | 920 | _ HIT/Sto | | 3 | 40 | 34 | | SUVE TE | 300 | 3/10/auto | | 3 | -40 | B3:- | | 41.33E-1.3 | 500 | 3,719/2832 | | | 40 | 19: | | 此7年12 | 900 | AP201800 | | | 400 | 46 | | AUTO LE | 000 | - 3/31/2000 | | | 10 | 45 | | 40,70° 1 °C | 1115 | 1.1/22/2006 in | | 44 | 10 | 18 | | ATW 12 | 1713 | VEH/2016 | | | 10 | 34 | | NTW ES | 7735 | 1/24/2900 | | 1 | 10 | 12 | | 07W-45 | (1135.) | 3/(25/2014 | | | 10 | 1a | | CON 1.5 | 1115 | 1/20/2016 | | AL. | Th . | - SK | | 0.0015 | 1115 | 3/27/2014 | | 7 | 10 | - 28 | | CTE II | 1115 | 3/28/2014 | _ | | 4.4 | - 51 | | | | | | | restriction of the sector t | Jin jr | |--------------|-------|-------------|--------|------|--
--------------------------| | Location . | Fints | This | Haib | | 2921081 | (120 3499)
(120 3499) | | MCW-12- | | 1/29/2016+ | 170 | 181 | 10 | 2) | | MEN-14 | 175.1 | 3/30/2015 | ibn | | 10 | 73 | | MITWA 11 | | 1/31/2010 | Der | 100 | 10 | 22 | | 00786140 | .915 | 5/3/2016 • | 2017 | | 230 | 52 | | 47:39-14b | 915 | J/2/2006 | | 131 | 230 | 54 | | ACW/TAB | 015 | 3/3/2004 | | 3.1 | 250 | 36 | | (CW-14b | 915 | 1/4/2016 | | 3. | 230 | 37 | | bONV Nes | 915 | 3/5/3016 | | | 230 | 50 | | 6791146 | 935 | 1/8/2010 | | 10.1 | 230 | 12 | | 5079(F) F-GH | 915 | 3/272016 | | | 150 | 9 | | NOW-EAC | 745 | 3/8/2016 0 | - Rout | | | -1- | | OCTOM THE | 745 | 3/9/2016 | Page | | Tegomin | 99000 | | NOW-1Hb | 745 | 3/10/2010 | · Nao | | **(Kare*) | Trainer t | | ICW 1946 | 745 | - M11/2014 | Rain | | TTENED IN | 171(ne)** | | 073W-14h | 745 | 3/12/2014 | 3.00 | | 411-1 | AA Juneaa | | (CW-146 | 745 | 3/13/2014 | Kin | | 11 (Care) | ********** | | reduction | 745 | 3/14/2014 | Tais | | Target and | A Promote | | 02/05/190 | 1000 | 1/15/2016+ | 1000 | - | 40 | 62 | | CAC SAN | 1000 | 3/16/2014 | | - | w. | 61 | | CWAN | 1000 | 3/17/2016 | | - | 40) | 65 | | CNF-14b | 1000 | A/re/dona | | | 40 | - 6 | | CW/1484 | 2,000 | 3/49/2018 | | 7 | 40 | 95 | | (C)((C)((D) | 1000 | 1/20/3015 | | 3 | a) | 41 | | CW-ME | 1000 | 372172016 | | ic | 40 | AT. | | (202/14]) | 1020 | 3/22/2014 4 | | 4 | 10 | 38 | | CDW/148- | 1.020 | 5723/2016 | | A . | 10 | 96 | | 5. W/1405 | 1020 | 5/24/2016 | | 4 | 10 | 31 | | CW/146 | 1020 | 372572014 | | 8 | LO | 46 | | 1.W 34E | 1020 | 1/36/2014 | | 3 | 10 | 44 | | 0.78 1 (D | 1020 | 1/21/20% | | E | No. | 18 | | CW-566 | 1020 | 1/28/3014 | | | 10. | 36 | | CAS AND | 955 | 3/29/2016 • | | | 500 | 36 | | CW-148 | 055 | 3/30/2016 | | 2 | Mon | 31 | | CW-140 | 13.5 | 3/31/2011 | | + | 50 | -62 | | CW (5) | 83/3 | 3/1/2016 • | | | 700 | 10) | | CW-75e | 530 | 3/2/2016 | | 0.1 | 700 | 14 | | C/W-15o | 688 | 3/3/2016 | | - | 700 | 50 | | 138/15c | 3.59 | 3/4/2014 | | # | 700 | 38 | | CW-15e | \$30 | 5/8/2016 | | 3 | 700 | 55.7 | | CW 15c | 850 | 5/6/2014 | | + | 2010 | 5T | | 63W-15c | -850 | 37772034 | | | 200 | W) | | (19-15c. | 716 | 3/M/BB## | Nem. | | William Red | - Tark | | (198-194) | 710 | 5/9/2016 | Ren | | -10 | 778 mil/7 | | (10.11s | 710 | A7909/2006 | Time | | Administration L # 1600 | 5-00 pg (8-2) | | | | | | Tadmin | sought Amora
and Smiral replayment (SCD) | - Caristoniii | | |----------------------|-------|--------------------------|-------|--------|--|---------------|--| | Telefolio | TCON_ | D'uc | Bins | | r=ePU | (E 651) | | | | | | | | 120131002 | 725. A11790 | | | 07W.15c | Lin | 3/11/2016 | Haw | | - 19 pg/15 | " Canife | | | 6C 0= 15c | 710 | 5/32/50/E | 0-1 | | -tdashi | Principle | | | (CW/JS: | 750 | 3/15/2016 | Desir | | Separate Sep | Himmies. | | | 0/20/1% | 710 | 5/34/2016 | 10- | | ring and the | 10000 | | | dC191134 | 1,000 | 3/15/2016+ | | | - in | 55 | | | ACM/ASI | 1.100 | 3/16/2016 | | V | 10 | 50 | | | 60,5W-75s | (100) | 3/17/2016 | | < | 10. | 49 | | | 4CW:15a | 1100 | 3/18/2016 | | | 10 | 46 | | | 6059-15s | 1100 | 1/19/2016 | | | 10 | - 6 | | | 6/3W-15c | 4,100 | 3/220/2018 | | 40 | 10 | 45 | | | ACTION 15s | Than | | | | | 48 | | | CW 15c | 913 | 3/22/8/16#
5/22/8/16# | | 2 | 10 | -11. | | | | | | | 40 | | | | | MTWENSE | /9/15 | 3/23/2018 | | | TIT . | AT | | | ICW/ISC | 915 | 3/24/2011 | | 100 | 10 | 401 | | | ETW-15c | V15 | 1/35/3001 | - | - | TA: | - 1 | | | (CW-)5e | RES | 3/26/2016 | - | 3 | t0 | 33 | | | K-74-13c | 915 | 1/27/2018 | | 4 | (0 | 33 | | | P. 78-15 | 915 | 3/28/201m - | _ | -6 | 10 | .51 | | | ICHE-ISc | 0.20 | 5/29/20116 # | | 4 | 3.000 | 15 | | | 位据结合 | 1920 | -3/39/3016 | | 78 | 1,000 | 31 | | | (CW-15c | 920 | M/14/2018 | | | 5,000 | 98. | | | WCW211- | | 3/1/2016* | Thy. | 30. | 10. | , ite | | | er.Wr.s.F | | 1/2/2016 | Dier | 40 | To . | 10 | | | ACMEST . | 1. | 1/3/2016 | 15pp | 3 | .10 | 110: | | | 47,917 | | 1/4/2016 | -De- | Æ | 19 | 10. | | | 477年5日 | | 3/3/30/4 | 130 | 32 | 10 | 10 | | | #13W: htt | | 1/4/2006 | Dry | 3 | 10 | 10 | | | (CWCCY | - | 1/T/2016 | Dig | 4 | 1.0 | 16 | | | OTUP IT | - | 3/8/2016+ | Dn | X-1 | 40. | - 14 | | | C.W.W. | - | 1/9/2019 | ,12m | | 10 | 10 | | | Ottobal I K | | Min/zofa | Line | | (0 | 10 | | | (C.W. 17 | 1 | XCD COMM. | E/ag. | | 100 | 10 | | | ACTOR OF | | 3/13/3/64 | 3/17 | - | 10 | 16 | | | ACKE ST | 1 | 271072000 | LDw. | | Mi In | 10 | | | ACMENT. | | 2.014/2016
2.014/2016 | Day | | (0) | in. | | | 的事。 | 1 | 3/15/2016+ | Dit | - | 10 | 10.
Sti | | | ACSW-15 | | 17/17/1044 | Dep. | | 10 | 10 | | | ACTOV TE | | 2/18/2016 | Dec | | 40 | -10 | | | ALTE-IT | | 7/19/2014 | De | | 70. | -18 | | | 60'90' (T | | 3/25/2014 | Dey | 4 | (0) | 10 | | | AC 50/1 = | | 3/27/2000 | Dec | | TIU T | 70 | | | CONCIT. | - | 3/22/2019/4 | Do | E . | tin- | 30 | | | A THE REAL PROPERTY. | | 3/25/2010 | Dis | | (0 | 10 | | | ATTE I | | 1/24/2006 | Day | | - 10 | 10 | | | | | | | (7/53) | angle = miple
and for (mg day and 2016) | (Greensch) | | |-----------|-------|------------|---------|--------|--|------------|--| | i aluniai | 1 da | Dan | Marin | | Oliver - | - Incents | | | | | | | | green States | phil Alego | | | MCWATT | | 3/25/2016 | 124 | 95 | 10 | in | | | MCW/LF- | | 3/24/2010 | 1kg | 1 | 10 | 10 | | | Mowith | | 3/37/2016 | The | 130 | - 10 | 10 | | | MCW-12 | | 3/26/2016 | Dep | 4 | 10 | 15 | | | HEW/12 | - a | 7/22/00/64 | 10m | -57 | -10 | 19 | | | MEW 17 | 10000 | 37/(0/2014 | Dry | 4 | 10 | 107 | | | dCW12 | | 3/3t/3076 | Day | 1 | in | JQ . | | | MCW H | | 1/1/2016 • | Do - | | 10 | 10 | | | MCW.IX | | 1/2/2016 | Day 1 | 4 | 10 | 10 | | | SIL'WHILE | | 3/3/2016 | Day : | 4 | 10 | 10 | | | MCNWAW. | | 3/4/2008 | Deg | 90 | 10 | 1h | | | MCW/H | | 1/5/2004 | 1200 | | 10 | 70 | | | MEDW/J/6 | - | 3/5/2016 | 15ty | 2 | 10- | 10 | | | MCW/18 | | 1/7/2014 | Dig | - | 10 | (I) | | | MUNICIPAL | | A/8/2014+ | Dig | 4 | tά | 10 | | | GCW:In | | 3/9/2016 | 1045 | 6 | 10 | .W | | | WCW-18 | 1 - 2 | 3/10/0016 | Day | 4 | 10 | NU. | | | 915年18 | 1 | 3/11/2016 | 1.59 | 6.1 | 10 | 10 | | | MEWLER - | | 3/12/2016 | -Day | 3 | 10 | 10 | | | W. W. 18 | | 3/13/2010 | Dey | 100 | 10 | to . | | | MODWE SE | - | 37 14 3014 | Dny | 51. | 10 | 10 | | | DEW200 | | X/34/2016# | Po | | 10. | 10 | | | MCW/14 | 100 | 1. 18/1056 | Dig | | .10 | - 10 | | | MUNANT. | | 3/17/201m | Dep | -01 | 0h | 10 | | | MCWA1# | 1 | 3/18/2016 | Dry | | -10 | 10 | | | MC/00-18 | 1-6-1 | A/49/2006 | Thy | 54,17 | 10 | 10 | | | 4039/cmt | 1-674 | 3/23522010 | -illing | 40. | Total Control | 10 | | | 409/44 | 1 | 1/11/2005 | Dra | 76. | 10 | 10 | | | ALWAIR | 1000 | 3/22/2016+ | 13ty | 40 | 10 | 10 | | | ME WE THE | 100 | 3/25/2016 | Litry] | 9.1 | 10 | 18 | | | MCW-FIL | | 3/24/2016 | Dity | | -01 | - (0 | | | AT, WELL | | 3/25/2016 | Div | 4 | 10- | 10 | | | W.W-196 | | 3/26/2016 | Day | 76. F | 10 | 10 | | | ACW-IN | I LL | 3/27/2016 | Diry | 4. | 10 | lth | | | 机体作 | | 3/28/2016 | Dig | | 10 | - 16 | | | (CW/E | | 5/29/20164 | Day | 91 | 10- | 50 | | | (CW-1) | HJ. | 3/59/2010 | Die | 27 | 700 | 10. | | | ACM OF T | | 3/01/2010 | - Dry | 91 | 10 | 10 | | ## Distance. Works with not become samples protected has from 72 know stree using with 500,77 year) over the presence of the project takes to calculate the generality. brade of \$20 cm alarmed to the lattice MER of Whitehoods about and the presence. Cities B.W., 2.38 parents permission for regime our MCW. Dilywell on Append Ad. (Instance) MCW. Fin) on August 1346, 1000 ▼ Entry of autopling PUBLIC WORKS AGENCY JEFF PRATT Agency Director March 24, 2016 Watershed Protection Clethor Tudy K. Clifford, Director Transportation Department David L. Fleigch, Circulor Engineering Services Department Harbart L. Softwind, Drestor Water & Senitation Department David J. Sanek, Divertor Central Services Department Jamice E. Turner,
Director Kangshi Wang, Ph.D. California Regional Water Quality Control Buand Los Angeles Region Standards & TMDI, Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subjecti MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring ciffort required by the Malibu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of February 2016. Sites were sampled weekly on Tuesdays (February 2, 9, 16 and 23). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry," Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with •). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fetal coliform monitoring has been discontinued; as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact me at (805) 645-1382. Sincerely, Ewelini Mutkowska County Stormwater Program Manager, Watershed Protection District CC: Tully Clifford, Watershed Protection District Paul Jorgensen, City of Thousand Oaks (via small) loc Bellomo, Willdan Associates (via email) Kelly Fisher, City of Agours Hills (via email) Allen Ma, County of Los Angeles (via email) Table 1. Weekly sampling results | | | | | 1 | Sinch Aboute | |----------------|--------|--------------|--------|-----|---------------| | Language | I Time | Claire | Hair . | 6 | - 1/17. mile) | | | | | | | 1(235 3(PN) | | MY W-8% | | 2/3/2016+ | | | Day | | March Williams | | 2/1/2016+ | | | - Days | | SMICW ARE | - | 1/10/20164 | | | Dry | | 74-W #- | | 2/21/20164 | | | Ωr | | MOVE | | 2/2/2016+ | | | Un | | MCW 9 | | 2/9/2016* | | | Dej | | MCW-8 | | 2/16/2014+ | | | Dec | | MICW 9 | | 2/25/2014 | | H | Dry | | MCW42 | 1200 | 1/2/2014 | Ram | | 1,500 | | MITW-12 | 900 | 3/9/2016 v | | | MOU | | NUCW-12 | 840 | 2/16/2016 + | | 131 | 20- | | MC99-12 | 920 | 2/25/2016 | - | < | 20 | | MXXW 1910 | 1115 | 2/2/2006€ | Ren | i i | 78 | | MCSW. Lith | 9,30 | 2/9/2016# | | - E | 46 | | MCW 100 | 910 | 1/10/2056+ | | = | 370 | | MOTOR 1 th | 850 | 3/25/30054 | | ·< | 20 | | MCW-tsc | 1050 | 1/2/2016* | Years | | 220 | | MCW//5c | 945 | E/072016# | 100 | 3 | 20 | | MCW De | 9,60 | 2/16/2016 • | | = | 707 | | MCW-15c | 815 | 2/33/2016+ | | 54 | 2) | | autowa 17 | | 3/3/2016 • | | | 13m | | MCW-17 | | 2/9/2016. | | | (3) | | MER/11 | | 2/19/2000 € | | | | | MCM:14 | | 2/22 (30)7/# | | | θη | | MCV-13 | | -2/0/2001 | | | Dirt | | MEMORI | 1 | 1/9/2006 · | | | 1 lin | | ME WEST | 1 | 27/14/2016+ | | | Deg | | 5M-W 18 | | 2/25/20/54 | | | Om | Since 0.002(20) parameter to regard the MCW-150 self-are spaced 00 (expected 00)W/250) on August 17th 2010 ⁴²⁵m of sweeping. Table 2. Computation of daily geomean | | | | | oran) | ing a sample
init -5 for a n
or and N710 | (friedlan) | | |------------|-------|-------------|-------|---------------|--|------------|--| | Samuella ! | Limi | Pon | 10-70 | | Test. | June 1944 | | | | | | | | - MARINEPINE | THE THEN | | | MCW-8b | | 2/1/2016 | Dip | T | 10 | 10 | | | MOWARL | | 2/2/2006 € | Deg | 100 | 10 | 10 | | | MC787-8b | - | 273/2016 | Dry | -6 | 10 | 30 | | | MCW-th | - | 274/2016 | Dij | | 10 | 10 | | | MCW-86 | - 0 | 275/2016 · | Dep | 8 | 19 | Łú | | | MCW-IIb | | 2/0/3016 | Dig | 40. | 10 | - 10 | | | MC97-85 | | 3/7/2016 | Dry | 10 | 10 | 10 | | | MCW-III- | 100 | 276/2014 T | Dig | 100 | 311 | 10. | | | MCW-8b | | 1/9/2016+ | Der | 197 | le- | 10 | | | MCW-8b | | 2/10/2016 | Diry | 4.9 | 16 | 10 | | | MOW ID | - | 2/11/2011 | Day | 19 | 10. | 10 | | | NCW46 | | 2/12/2016 | Deg | | 25 | 10 | | | 战型曲 | | 2/13/2016 | Day | | 10 | 10 | | | MCW-ID. | P- 1 | 2/14/2014 | Dep | 140 | 197 | 1.0 | | | MCW-Nb | | 2/15/2008 | Dity. | 3 | 19 | 10 | | | MUW-W | -63 | 2/10/2016 • | 100 | - | 10- | 10 | | | MCW-86 | 100 | 2/17/203A | Diy | 爱 | 10. | 10 | | | MCW-86 | | 2/38/1000 | Lary | 10. | 10 | 10: | | | MCW-86 | | 2/19/2006 | Day J | \mathcal{L} | 10 | 1.0 | | | MCW-80 | | 2/30/3010 | 120 | 4 | 10 | 10 | | | MCW-m | 100 | 2/21/2014 | Day | 40 | 1.0 | 10 | | | 测广联-结。 | | 2/24/3056 | Day | 8 | 10 | (0. | | | MCW-85 | SAC | 2/23/3/16+ | Chy | 8. | 10 | Alt | | | MEWAD | | <2/24/2016 | Day | 16. | -10 | - 10 | | | MCW-85 | - | 3/35/3000 | Dry | 5 | 10 | 10 | | | MCW-85 | 120-0 | 1/36/3816 | - Dig | 100 | 10 | 4.0 | | | 54LW-8% | 10.5 | 3/27/7010 | Div | .57 | 30 | 1/0 | | | METO BIS | | 2/28/2010 | Chy | 7 | 10 | 10 | | | SICW BE | 240 | 2/29/2019 | Day. | 44 | TV. | 10 | | | MCW-9 | =(.) | 2/1/2016 | Dry | | 10 | 10 | | | MCW-9 | | 2/2/20104 | Dey | 30 | 30 | _40- | | | MCW-9 | | 27 A/TR016 | By | -80 | 10 | _10 | | | ALTW/9 | | 3/4/2016 | 230 | | 100 | 10 | | | 6H2W/9 | | 2/3/2011 | IDM: | | | - 10 | | | MCW/0 | - | 2/4/2014 | Dec | | 100 | .10 | | | MCW(9 | | =17/200e | De | 74 | - 100 - 7 | - 19 | | | 66.707/9 | | - 2/8/30816 | Diy | T | 10 | 10 | | | 13779/30 | | 2/9/20184 | Dn | | .00 | 10 | | | NACOVID | | 2/3/1/2016 | Dra | 77 | 10 | 10 | | | AREW II | - | 2/11/2014 | Elin | | 10 | 19 | | | MCW-9 | | | _ | 30 | | 10 | | | | | 2/12/2014 | Day | 4 | 10 | | | | MCAN | - | 2/15/2016 | Dep | | 10. | 10- | | | | | | | THE | ingle Sample
Detect to rolls
ream#1820at | German | | |--------------|--------|---------------|----------------|-----|--
---|--| | I diam | 1 Time | Dist | [Mant. | | (2. million) | - In colum | | | | 100 | | 1 | | EDU MPRO | (200 SHESS) | | | MCWA | | 2/15/2016 | Dig : | 10 | 100 | | | | Mr W-a | | 2/10/2019 | 1219 | 7. | 10 | -10 | | | 1007765-91 | | - 2/11/2019 - | De | | 100 | 10 | | | 1600,000.0 | | 2018/2018 | Div | 4 | 10 | 10 | | | 300000 | | 2//19/2016 | Die | 4 | 10 | 3.0 | | | MCWA | | -2/20/2010 | Day | 2 | 10 | 10. | | | MCW4 | 100 | 2/21/2016 | 1209 | 7 | 10 | 30 | | | BACWA | | 2/22/2016 | Day | 46 | 10 | 10 | | | 540,700.9 | | 2/23/20164 | Line | 1 | 10 | 16 | | | MCWF | | 2/24/3000 | 1 | - | 10 | 10 | | | 70 m 1 70 m | - | | Day | | 10 | - 10 | | | TMCW/9 | - | 2/25/2010 | Day | | | | | | ARTIO, 0 | _ | 2/34/7006 | D _m | - | 10 | -16- | | | MCDF 6 | - | 2/42/2010 | Phy | | 10 | 16- | | | Particon in | - | 3728/2014 | Log | 3 | 10 | - 40 | | | - MCE WO 0 | 100 | 2/29/2016 | Dit | 3 | -16 | 10 | | | SHEW 12 | 720 | 2/1/2016 | | 20 | 740 | 119 | | | PROME DE | 1200 | 2/2/20th= | | | Sell-mild | AN ALIENSA | | | MCW-19 | 1200 | 2/5/2016 | | | And Personal | - Place | | | PE100-13 | 1200 | 3/4/30)6 | | | Addings: | PERM | | | MURI 10 | 1200 | 2/5/2016 | | | 27 April 19 | 178.34 | | | PRCA2-13 | 1200 | 2/0/2016 | | | of the state of | Physical Property of the Party | | | LINE SATURAL | 1200 | 2/7/2014 | | | And the last of th | -74 | | | MUNICIPAL | 1200 | 2/8/2016 | | | and Managerial | - March | | | -MCW-12 | 900 | 2/9/2016+ | | - | 360 | 13a | | | 0.00 W/4.2 | 900 | 2/10/2016 | | = | 300 | 130 | | | MOWIN | 900 | 2/11/2816 | | Ε. | 300 | 168 | | | MOW-12 | 200 | 2/12/2018 | | = | 300 | 130 | | | MICTO-12 | 900 | 2/15/2016 | | - | 300 | 211 | | | MCW/Q | 000 | 2/14/2004 | - | 100 | 300 | 236 | | | PELANT | 700 | 2/13/2014 | | 9 | 300 | 263 | | | M450/33 | 840 | 2/19/2016* | | | .70 | 20 | | | MUNETER | 840 | 17/12/2010 | | | 10 | -301 | | | MCW/CZ | 840 | 2/18/2014 | | (0) | fg. | 211 | | | M4/3V-1/2 | 1340 | 2/19/2016 | | 100 | -/1 | 213 | | | MECW-13 | 840 | 2/29/30tp | - | (0) | 20 | 210 | | | MCM12 | 840 | 2/21/2016 | | = | 70 | 195 | | | NOTW-12 | H40 | 2/22/2019 | | = | 70. | 177 | | | NCM-12 = | 920 | 2/23/2016+ | 100 | 3 | 10 | 1/0 | | | E0000111 | 020 | 2/24/2016 | | 10 | 10 | 126 | | | MCGUL | 920 | 2/25/2016 | | 10 | 10 | 718 | | | MC0012 | 102D | 2/26/2018 | | < | 10 | füa- | | | MOWIE | 920 | 2/27/2016 | | 4 | 10 | 15 | | | 26. 10.12 | 920 | - 2/28/2011 | | 10. | 10 | - H | | | MCW 1/L | 1 920 | 2/29/2016 | | w | 1.0 | 28 | | | | | | | 7347 | mely stateph
Justical Personal
School Military | ā | | |-------------|----------|------------|--------|------|--|-----------------------|--| | Lenanton | 1 Marcel | Warn. | / Bion | | II o'47 | Rendle | | | | | | | | 7235-8005-1 | (12d Altres) | | | MCW.Uh | 11115 | 2/2/2016+ | | | and in | APIJano ^{AA} | | | MCW/L-b | 11137 | 2/3/2606 | | | Transfer. | A Charlet | | | MCW-140 | 1115 | 2/4/2000 | | | 20(fores*/ | Set Classic Sea | | | MCW-186 | 1115 | 2/5/2010 | | | 91 Linn 1 | - Patricine | | | MCW-146 | 1115 | 2/6/2016 | | | 9,4 (Lain) 11 | A Ramon | | | MCW-14h | 1,1115 | 2/7/2016 | | | PULL PI | -10 ₃₀₀ +1 | | | MCR/146 | 1115 | 2/8/2016 | | | a-Day | | | | MCW-14E | 1/20 | 2/0/2016+ | | | 49 | 66 | | | MCW/148 | 026 | 2/10/2016 | | 1 | 66. | 35 | | | MCW-14h | 1920 | 2/11/2014 | | | 40. | 34 | | | MCN2-14h | 920 | k/12/2816 | 1 | - | 400 | - 33 | | | MIDW-14h | 9.20 | 2/13/2004 | | | 43 | 52 | | | MCW-145 | 920 | 2/14/2009 | | | | 30 | | | MCW-14Le | 1920 | 2715/2014 | | w | 46 | 86 | | | MCW-Ten | 710 | 2/16/2016+ | | 701 | 170 | 161 | | | MCW-THE | 910 | 2/17/2016 | | - | 170 | 52 | | | MONETON | 940 | Z/19/2016 | | - | 1700 | 36 | | | MCW 14h | 910 | 2/19/2000 | | 30. | 170 | 10 | | | MCW-140 | 910 | 2/20/2008 | | 20 | 170 | M | | | MCW/140 - | 910 | 3/21/2016 | | | (20) | - 40 | | | MCW/146 | 910 | 2/22/7000 | - | | 179 | - 14 | | | MCW38b | H50 - | 2/21/2010+ | | 提 | t.o- | 71 | | | MILTW-146 | 850 | 2/24/2016 | 111 | 4 | 40 | - 77 | | | MCW-14h | 850 | 2/25/2016 | 10.00 | 10. | £07 | W. | | | GIC WATER | 850 | 2/26/2016 | | - | 10 | - 41- | | | MCW 14h | 850 | 2/27/2010 | | 4 | 10 | 57 | | | MICW-148 | 950 | 2/28/2016 | | 14. | (n) | - 34 | | | MCW-146 | 550 | 2/29/2016 | | WC. | - 10 - 7 | 50 | | | MCW 15c - | 545 | 2/1/2010 | | 10 | 170 | 36 | | | MCW-15a | 1030 | 2/2/2016+ | | | Elfogo# | **(0.00** | | | MCW-INC | 1050 | 2/3/2014 | | | 900an#4 | 450,000 | | | MCW-15E | 1030 | 2/4/2016 | | | ************************************** | - PERMIT | | | 4078-15a | 1000 | 2/5/2016 | | | imp _{and} m | 466,600 | | | MCW/45j | 1030 | 3/4/2014 | | | Ar Carrylan | 153 pm/s | | | MCTW-154 | 1.030 | 2/7/2018 | | | **(5,410)*1 | 495,000 | | | MCW-15e | 1030 | 278/2000 | | | man and a second | 110 | | | MCW-35c | . 945 | 2/9/2016# | | 100 | 20 | 51 | | | MCW-15e | 943 | 2/15/2010 | | - | 36 | 38 | | | MCW-lbc | 945 | 2/13/2016 | | 50 | 20 | 59 | | | NECTAL-10- | 945 | 0/12/2016 | | 14 | 29 | 607 | | | MICHELISE - | 045 | 2/13/2016 | | 4 | 20 | 400 | | | MCW-like | :945 | 2/16/2016 | | -01 | 20 | - 11 | | | MCW-13c | 045 | 7/15/2016 | 100 | 4 | -50 | 15 | | | NICKE USC | 930 | 2/10/2016+ | | -1 | mi- | -05- | | | MCW-15c - | 0.00 | 2/17/2006 | | 91. | To | - 36 | | | NCW15 | 950 | 271872016 | | 4. | 70: | 50 | | | | | | | 14 | ings Forgi-
good to con-
t- of SUA | Bertmen | | |-----------------------------|-------|-------------|---------|--------|--|---------|--| | Latino - | - Doc | 1134 | - Hino: | | T. 140 | TI 265 | | | | | 1 | | | (235 MPN) | 100 MIN | | | MCW-134. | -OEW | 2/19/SHE | | | 30 | 52 | | | 50CW (3) | .930 | 2/20/2010 | | w | 7/0 | 55 | | | MCW.15c | 930 | 2/21/2046 | | = | 70 | -57 | | | MUW-150 | 950 | 2/22/2010 | | - | 70 | 50 | | | 3678-131 | 815 | 2/25/2016* | | 40 | 10 | 58 | | | MCW-15e | 815 | 2/24/2016 | | - | 10 | 57 | | | MEW 15 | N15 | 2/35/2016 | | 100 | 10 | 53 | | | MITW-15s | 813 | 2/26/2016 | | 3 | 10 | 40 | | | MCW-15. | 815 | 0.73772036 | | | 3.0 | 18 | | | MUW-124 | 815 | 2/28/2016 | | 4. | 10 | - 0 | | | MILTO 151 | 815 | 2/29/2019 | | 3 | 10 | 10 | | | MCW-FT | 11. | 2/1/28/6 | Det | 7 | 16 | 711 | | | MCW-L1 | | 2/2/20/64 | Dry. | 196 | 10 | 10 | | | MCW-17 | 1 | 2/1/2010 | Uni | 4 | 10 | 10 | | | MCWAT | 137 | 2/4/2016 | Dec | | 19 | 10 | | | MITW-17 | 100 | 2/3/2016 | Dec | 4 | 10 | 10 | | | MUWIE | | 3/4/39/8 | De | 300 | 70 | 10 | | | MCM-15 | | 2/7/2016 | Day | 4 | 10 | 10 | | | MCWA2 | | 2/8/2014 | Dec | 3 | /(0 | 10 | | | MIN TO | | 2/9/2096# - | Die | 2 | 10 | 10 | | | MCW-17 | 1 | 2/10/2014 | Dec | 4 | 10 | 10 | | | MCW-ST | | 2/11/2004 | thre | -81 | 10 | 20 | | | MCW-17 | | 2/11/2016 | 1366 | 80 | 10 | 10 | | | MCW-IT | | 2/13/2014 | Dir | 4 | 10 | - 10 | | | NC 70/ 17 | 1 | 2/14/2019 | 1517 | 1 | 70 | 10 | | | MCW-17. | | 2/18/2019 | Dire | 100 | 10 | 10 | | | MCW 17 | | 2/16/2011+ | - Div | | 10 | 10- | | | No TOURT | | 2/77/2004 | Dir | | 10. | 70 - | | | NCW/ CL | | 72/18/2016 | Div | | 10 | 69 | | | MENO TT | | 2719/2016 | The I | 1 | - 10 | 10 | | | MUNICIPA | | 2/26/2016 | Day | | 30 | 1.0 | | | MICTO T | 175 | 2/21/2016 | Day | | 10 | - 50 | | | MCW-17 | | 2/22/2014 | Die | - | 10 | 1.0 | | | MCW-IT | | 2725/2016 | Dist | Te. | 10 | 90 | | | SACTOR LE | 7.0 | 2/24/2014 | Day | | .10. | 1.0 | | | METAL 17 | | 3/23/2006 | Thr | | 10. | 1.4 | | | MCW-LT | | 2/28/2016 | Din | 10 | 10 | 1.0 | | | MCW-1T | | 2/27/2016 | ber | | 10 | 10 | | | MUR-IT | | 2/20/2016 | The | - | 7.6 | 10. | | | NC 91-11 | | 2/29/2006 | Der | -6- | 10 | 10 | | | MOW 18 | | 3/1/2014 | Day | T. | 10 | 1.6 | | | MC2W/18 | | 2/2/2010# | 17m | 10 | ti) | 10 | | | MCW-III | | 2/3/2010 | | | | 10 | | | and the same of the same of | | | Der . | | 10 | | | | MCDF-UII | | 1/3/2016 | Ling | - | 1// | 10 | | | MCW-U | | 2/3/2010 | Line | \sim | 10 | 19 | | | MEWIT | | 2/14/2016 | Lity. | | 1.0 | 70 | | | | | | | Gell | ingle a more
a
instead for galor.
rel and MD a | German | | |------------|----------|-------------|--------|------------------------|--|--------------|--| | Incapiant. | 1 Tiplem | - Page | 1 Cine | | E itali | filedi | | | | - | | | | (AM (MPN) | CHES SERVICE | | | MOWNE | | 2.55/2016 | De | | - 00 | 10 | | | MCW-11 | | 2/8/2016 | 70 es | 100 | 10 | 10 | | | MX7W7-28 | | 2/9/2016+ | Tary | | 10 | 15 | | | MXXV4121 | | 3/10/2016 | Dep | | 10 | 10 | | | MCW/38 | - | 2/11/2014 | Day | - | 10. | 10 | | | MC78/08 | | 7/12/2016 | Dhy | | 10 | 10 | | | MCWSII | | 2/15/2018 | Day. | 40 | 10 | 101 | | | MEXW-18 | 1.50 | 7/14/2016 | -thy | 31 | 10 | 10 | | | MCW3# - | | 2/15/2014 | Dyr | - | 10 | .10 | | | MCW-11 | | 2/16/30164 | On | 4. | 10 | | | | A00W-18 | - | 2/17/20to | On | 35 | 10 | 10 | | | 680'W: 14 | | 2/16/2016 | Dire | 10 | 10 | 19 | | | MCW-18 | | 2/19/2016 | Tay 1 | 4 | 10 - | - 10 | | | MC384-16 | | 2/20/2014 | Hory | 4. | 10 | | | | MCW-fit. | 1-2 | 2/20/2000 | Day | \mathcal{H}^{\prime} | 10 | 10. | | | MUWAR | 15-1 | 2/22/2016 | Des | 4 | 10 | 10 | | | MCW-th | | 2/25/2016 + | Dry. | 31 | 10 | 10. | | | MCW/III | - | 2/24/2010 | 17m | 40 | 10 | - 30 | | | MCW-th- | - 7 | 2/25/2016 | 32vg | €. | 10 | 10 | | | MCW-ta | 100 | 2/26/2016 | Dry | = | 10 | 10 | | | MCW-H | | 2/25/2016 | Dhy : | 76 | 10 | 30. | | | MCW/18 | 1 mm | 2/26/301h | -10m | | 10 | 700 | | | MCWith | -2- | 2/29/2016 | Deg | 40 | 10 | 10 | | | | | | | | | | | Where with over weather amples (tolinged him than 72 hours after a day with >0.1" (see) the previous previous emple sample value to calculate the previous. Benefit of $r \ge 0$ (see without 0.0 are half the MEL (= 10) to the releadance of the ^{*} The RWQCB gramed permanent in replace the MCW-152 with the Second (A (growned MCW-15c) on August 110. 2010. P Date of sampling PUBLIC WORKS AGENCY JEFF PRATT Agency Director February 22, 2016 Kangshi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit 326 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Watershed Protection District Fully K. Gillford, Director Transportation Department David L. Fleison, Director Engineering Services Department Herbert L. Schwind, Director Water & Sanitation Department David J. Sanek, Driedon Certai Services Decerment Janko E. Turner, Drector Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Mahbu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of January 2016. Sites were sampled weekly on Tucadays (January 5, 12, 19 and 26). Sites without results reported were not sampled due to insufficient flow and are tabeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with*). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" nun) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal coliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have my questions regarding this matter, please contact Ewelius Mulkowska at (805) 645-1382. Simperely. Cierbards Hubner Deputy Director, Watershed Protection District CC: Tully Clifford, Watershed Protection District Ewelina Mutkowska, County of Ventura Paul Jorgensen, City of Thousand Oaks (via email) Joe Bellomo, Willdan Associates (via email) Kelly Fisher, City of Agoura Hills (via email) Allen Ma, County of Los Angeles (via email) Table I. Weekly sampling results | | | | | | nonale Sanigati
and Engineers | |-----------|--------|--------------|----------|-----|----------------------------------| | Assathin. | Limit- | Dim | _3kum | | H_0001 | | | | | | | (ALS RIPN) | | bra.W. | | 3/5/39000 | | | Con | | MCW-R | - 2 | 4710/20164 | | | Dep | | Mark H | | 1/19/2015 0 | 1 | | Pay | | 16 W 10 | | 3.12672008.4 | | | City | | 245.50, 0 | | 1/5/2015+ | | | Ling | | MCW/I | | 1/12/2016 + | | | Dire | | 2010/2019 | | 3/10/2016+ | | | Dip | | Mr. Inf. | | 1.70/2016.0 | | H | Un | | MOWNE | 1015 | 1/5/20204 | Kam | | 9,000 | | MCW-12 | 910 | 17.12/2016 # | | | 1,700 | | MC99.15 | 3110 | 1219/2010# | | mb. | 170 | | MCW/18 | 720 | 1/26/20164 | | | 140 | | MCW-346 | 050 | -1/6/2016≠ | ACASII . | - | 1,380 | | MC94-Pitt | 545 | 1/12/2016 | Trajes . | - | 20 | | MicWolds | 1045 | TCH/mmaa. | | | -10 | | MCX-140 | 745 | 1/26/2016# | | | M | | | | | | | | | MCW-Es | 350 | 1/5/2016# | Ass. | - | 1,100 | | MEMPERA | 350 | 17 (2/2014) | | - | 39 | | NCW-15- | 1015 | 1/10/2016 | - | 20 | 30 | | MCW-Use | 645 | 1726/2016* | | = | 170 | | MENERAL | | 1/3/2011+ | | | Deg | | MOWER | | 1.1572014# | | | Day | | MCW: C | | 17/4/2016 • | | | Day | | MCW IT | | 3/2h/B/11 € | | | lta | | MESSA | | 7/3/2011 0 | | | 276 | | MCK IF | | T/In/pola+ | | | | | MCW III | | 1715/0014 | | | Dry | | MCWCOL | 1 | 3/20/22004 | | | Dep | ^{24.000} to the trace of the property of the state of the second of the second se White of complete Table 2. Computation of daily geomean | | | | | | ingle sumple
uned faction,
is and NDs) | Commun. | | |-------------|-------|---------------|----------------|------|--|-------------|--| | Loggicus | Limb | Dire | Thank, | | (Biroli) | Fradil | | | | 1 3 | 100 | | | - CAMPANIAN | 1126 512150 | | | BOCKWARD I | 100 | 3/1/2018 | Lin | 5 | 10 | 10 | | | MCW/db | - | 1/2/2014 | Day | 47. | 10 | 10 | | | MCWAL. | | 17475038 | Day | 15 | 100 | LQ- | | | MCW/the | | 1/4/2014 | Dir | 12. | 30- | 10 | | | MCW 8b | 100 | 175/2018 | Dieg | | 111 | .10 | | | MCNC 80 | _ | 1/6/25/0 | Day | 1.75 | , iii | - 75 | | | MCW:46 | 1 | 1/7/2010 | Day | 141 | 10 | 19 | | | MITMAN | - | 17872016 | Dig. | | ED | 16 | | | WILW TO | 7 | 1/9/2016 | -12m | | DE | 10 | | | MI/W:01 | _ | - 1/10/2010 = | D _W | 5 | 107 | 16 | | | ALC: W. W. | - | 1/11/2016 | 177m | -01 | 10 | 10 | | | M/W 8 | |]/12/2015e | Dig | | 10 | 10 | | | MICW 86 | | 1713/2010 | Dev | - | 10 | - 0) | | | NAC WORLD | | 1/14/2024 | 124 | 10 | -100 | 16 | | | MCW-th | 1 | 17/14/3004 | 1302 | 15 | 10 | 30 | | | MCW86 | - | 1/35/2016 | Dity | 45 | -10 | 10 | | | MICRO-BI | | 1737/2014 | They | 47. | 10 | 76 | | | MCW-85 | - | 2/18/2016 | Day | 100 | 10 | (0) | | | MCW/au | | 1719/2016# | Din | 1 | 10 | - 16 | | | MCW-to | | 3/20/2016 | Chy | (5) | 16 | 10 | | | 207.307.00 | | 2721/2010 | Deg | 151 | 10 | 10 | | | MLW-M | | 1/22/2014 · | Lary | 75 | 10 | -11 | | | MCW-8 | | 172372016 | Dex | 4 | - 10- | 30 | | | MCWAE | | 1734/0004 | Dog. | 5. | | 10 | | | MEWalls | 1.1 | (17572914 | Higgs | | - 12 | 131 | | | SECW 36 | 115 | 1/26/2016 w | Div | 5 | 101 | 10 | | | MCWah | | 1785/2010 | Die. | 100 | 10 | 10 | | | SECTION AND | - | 1778/2014 | The | 100 | -10 | 101 | | | MCW-88 | | 1/25/3016 | Dity | 5 | (0) | | | | MCWAL | 10.0 | T/50/2018 | Day | U.S. | 10 | 100- | | | MCW-8b | | 1/31/2016 | Deg | 0 | -10 | (0) | | | MC-9/-9 | -13 | -1/1/IDIE | Tho | | 3.0 | 10. | | | MCW/a | | 1/2/2010 | Dite | 3 | 10 | - (0 | | | MCWA | | 123-101 | Dry | | 10 | (0) | | | MOWN | -,-,- | 1/4/2016 | Big. | 8 | 10- | 10 | | | AAZ/Web | | 178/2004 • | Deb | - | -4 | J.U. | | | MCW-F | 7-3-6 | 176/2010 | 37/9 | 0.1 | 10 | 1.0 | | | M02007 | | k/17/2010 | Use | 16 | 101 | 5U | | | 36036/9 | | 170/2018 | Tay | | 10 | LOI. | | | MICWIN | | 1/972018 | Ole | | 10 | 10 | | | MISWID | | 3/10/2010 | Day | | 7 | 10 | | | WIC207-9 | | 1/11/201A | - Der | | 16 | (0 | | | ARDWIN | | 1/13/2006 | Dn | 1-1 | 10 | 100 | |------------|---------|---------------|-----------|------|-------------|----------------| | M024/9 | | 170,500 | Dec | | 1/4 | 100 | | 34CW/9- | | 1/19/2016 | Dec | 134 | (1) | 10. | | MCASS | | 7.714/2010 | Den | | A) | 1.0 | | METWO! - | 1 - 2 - | 1756/2010 | 1919 | 100 | 10- | - 10 | | 340,7888 | | F247, threas | Our. | | te | 10 | | MOVA | | 1/11/2/16 | -Dity | | - 00 | m | | MCW = | | 1/10/20hie | Do | | - m | 10: | | 20.00 | | 1/20/2016 | Dep | 177 | - 10 | m | | Situation | | (/2)/2010 | De | | 10 | 10 | | 30,000 | | 100/2014 | Im. | | -01 | Life | | horwa | | 1/20/2004 | Ling | | 10 | 10 | | | - | | | | | | | MITTERS OF | 1 | 1/24/2014 | 1275 | | 12 | 1,0 | | MCW9 | - | 1/15/2016 | Day | - | 10 | 1161 | | MUMA | - | 1726/30164 | Lin | - | 30 | 1.0 | | 2000年1 | | 1/27/0016 | 134 | - | 10 | 114 | | b679/J | | 1729/2006 | Dys | χ., | 36 | 140 | | MENNO | | 27/39/30/0 | 1.0 mg | 12 | 10 | 10 | | MCWA | 1 | 17.507.3010 | 17m | 124 | 10 | -510 | | MCTR/6 | - | 1/11/2000 | Da | | 10 | 10 | | MV/W-42 | | = +/\E20H6 | 1049 | | | - 10 | | 64/70/32 | | 3/20200 | Street. | | 10. | 19 | | MC300.12 | | 1/3/2006 | Deg. | GE. | LIL | 10 | | MC397-02 | 1.0 | 1,/9/2019 | They ! | 1 | 10 | 10 | | MEDW-02 | 1945 | 175/2016+ | Warn | | - Marie - | - Million A.A. | | MCWRID | TD45 | 176/2019 | Rubi | | TOTAL PARTY | | | MCW-II | 1045 | 37772014 | "Nide | | 1 | 79.00 | | MCW 12 | 1.065 | 1/4/2006 | Ditte. | | | - Harry | | MC706-12 | 1045 | - 中の共和国 | Ries | | 17 1 | 1)=1 | | 加坡地 | 1045 | 17.107.000 | History | | 112 | | | MEW # | 1045 | 1/11/2019 | Raine | | History 4 | *1434 | | MEW 12 | 210 | L/12/2016 * | A 80-30-3 | 100 | 700 | (2) | | 他に知って | 910 | TELLIFICATION | | 100 | 1,706 | - (4 | | MIDW-12 | 910 | 1/14/2011 | | 100 | 1,760 | - 11 | | 350 W-110 | 910 | 1715/30034 | | -40 | 1700 | 70 | | Mr. W. Its | 210 | 1/16/2019 | | 100 |
1.200 | 2) | | MCWill | 910 | 1719/2014 | | -4 | 1,200 | .27 | | METER 21 | 910 | 1279.53046 | | 100 | - Noe | 31 | | 月二十二 | 1110 | 1/11/2016+ | | | [70 | 14 | | MOW LI | 11140 | 1/20/2016 | | 4. | 1.10 | 40. | | HEW-11 | 1.7100 | 1/20/409 | | 31 | | - 14 | | HCM11 | THE | T/22/2015 | | 4 | 70 | - H | | MIDWIS | itte | 1/24/2004 | | 4 | (5) | - 3.1 | | MCW III | 31400 | | | 70 | 1701 | - OL | | MLW-LL | 1100 | - temente | | | (30) | - 11 | | 2016 | THUE! | 35/300/.€ | | (00) | -030 | - 41 | | MITMETT | THO | APRIL 1911 A | | - | 111 | - 11 | | 51,1211 | 4110 | 1/20/2010 | | + 1 | (10) | - 11 | | MONEY | 720 | 17792004 | | | (21) | ->319 | | MEWAL | 720 | 1/30/2016 | 191 | 100 | HI | |----------------|-------|---------------|-------|----------------------|-----------| | MCW-11 | 720 | - 4/37/2016 - | - 13 | 7000 | 3,79 | | | | | | | | | 州以及江市。 | 850 | 1/1/2016 | - 1 | 10 | 260 | | 65000 140 | 550 | 1/2/2006 | | 40 | 272 | | 州以北京46 | 253 | 1/5/23() | | - 0 | 380 | | 1917/26 11/89 | 850 | 1/4/2016 | | 700 | | | MCWITE | 930 | 0/5/9006+ | | -5046 | - House | | MC28-140 | 714 | 1/6/200E | | _Uhar | TALL | | MCW-14b | 930 | (77/2019 | | -19Loim | - TSEAL | | MOWNE | 530 | 170,2010 | | Addition of the last | "Anguer | | MEWOR | 930 | 37/1/2016 | - (1) | 14.00 | 11/200 | | MUNITER | 6301 | 1710/3011 | | Princip? | 1950 | | ME20/241 | 930 | - 1/17/201k | - 1 | | | | MC30/345 | 3145 | 1/51/2018 ■ | | 20 | 209 | | MCW-INC | 845 | 7/54/2010 | 100 | 29 | 279 | | MUNICIPAL | 345 | 3.UA/2016 | | 20 | :285 | | NCW-146 | 845 | 1/15/2014 | - 2 | -3 | 272 | | MCRO-14th | 845 | 3/16/2014 | | 20 | 244 | | MCW-14E | 845 | 9/17/2006 | | 26 | 245 | | MCW341 | 545 | 1/18:3510 | - 1 | 27 | 237 | | ALTW-141- | 1.04% | 1/29/2016# | | 89 | -015 | | MCW-1HE | 1045 | 3/70/2014 | - 0 | 90 | 257 | | MEWARE | 4045 | 1/21/1016 | 100 | 161 | 223 | | MESSY SEE | 1045 | 1/21/2016 | - 31 | -30 | 377 | | Jacob pay | 1045 | 1/22/2014 | - 0.0 | 61 | 209 | | 340,76-3402 | 1045 | 1 524/2005 | 100 | 40 | 199 | | 3602853.00 | 1045 | 3/25/2016 | -7.4 | | 100 | | METWORK ! | 1945 | 1/29/2016# | 100 | .101 | 192 | | NO NOTE OFFI | 1045 | 1/20780m | - 4 | 10. | 191 | | MEWSH | 1045 | 120/2016 | 1.6.1 | 83 | 140 | | MCWAIII | 745 | T/29/2016 | 1 2 | 10 | 117 | | 利信服-1900 | 745 | 1130/3010 | | - E1- | 709 | | MET W 175 | 745 | 1/31/2016 | | 10 | 25 | | | | | | | | | MCW/ISE | 520 | J.(1/3000) | 1.5 | 0 | -34 | | MX:W-15e | 820 | 1/2/2010 | - 1.7 | 10 | 169 | | MOW SE | 830 | 17272016 | - 155 | 10 | 146 | | MUW 15 | 927 | 1,94(2010) | -414 | - Apr | 1/3 | | MEXPLO | 850 | 175(20)(0+ | | . HEALT | 11/2001 | | 8415 West Ser- | 800 | 1/4/2010 | -11 | The Land St. | | | MCW-35c | 831 | 1/7/101% | -1-1 | NASC CO. | | | 561, 67-13- | (450) | 1,75,72010 | | PESADO" | | | M. M. L. | 957 | 1.73-3010 | | - PM-10-2 | - Million | | -WI | b50 | 1,1042010 | | | | | 41 W.156 | 850 | -1711/30ta | - | -0.5 | | | 24CW-15s | 827 | 17/12/2010 | | | - 101 | | SELVE (Sec. | 620 | GPANZBIA | - 121 | 25 | 77 | | MCW-Es | 834 | -1,014/2018 | | 22 | (8) | | MOWING | 827 | 1//1// 2010 | | -30 | 5e- | | M0_00 (15a | 820 | 1/53/2010 | | | 7.01 | 40 | |--------------|-----------|---------------|-------|-------|-------|-------| | MCW 25 | 820 | 1714/2019 | | | 20 | 354 | | HCW 454 | 1015 | 4/10/2016+ | 1 | | 100 | 4.5 | | 56CW-154 | 1015 | 1750/2346 | | | 80 | | | 00 W : 4 | 1015 | 1/21/0 16 | | 50 | Mi | - 22 | | MDW No. | 1015 | 1,423,500 (c. | | | 100 | - 5 | | MCW-15 | 1015 | 1/21/2010 | | | - 65 | 25 | | METERS. | 1015 | 1/29/2284 | | 1 + 1 | | 23- | | NOW US | 1015 | 1725/2016 | li de | UK.F | 300 | 21 | | MCW-Dec | 1015 | 5/26/2018* | | 14-1 | 400 | 3.4 | | BRIW ISo | 7.015 | 1/27/7006 | | -1 | 100 | 21 | | MCWIS | 1015 | 1/28/2014 | | | 46 | 24 | | MEMILIA. | 645 | 1/29/2034 | | 10. | (27) | 24 | | NUMBER | 645 | 17/80/2016 | | - | (70) | 7.9 | | PROMERT | 1945 | 1/16/22/06 | | 10.7 | 170 | 2.6 | | A CONTRACTOR | | 71.71.290.14 | | | 36 | 100 | | MOWNT | | 1/1/2016 | Arm | 10.0 | 10 | 10 | | MUW-27 | - | 1/2/2016 | 350 | | | - 135 | | MEW-ET - | - | 173/2014 | 1200 | 10 | 4.0 | - 436 | | ALCOHOLDS | | 1=4/2006 | 129 | | 30 | 10 | | MUNIT | | 1/5/2016+ | 17/17 | 100 | 10 | 10 | | ALCOV 11 | - | 1/3//2018 | thy | - | 10- | 70 | | MCW-12 | 100 | (777201A | Jon. | -3- | Ed. | 1.0 | | ME, BELTS | - | 5 Ph. 2008 | 100 | - | 10 | 101 | | 40/20/11 | - | 179/2014 | Dip | | - MI | 1.0 | | MCW-11 | re June | 11/20/2010 | 1014 | 100 | (0) | 1.0 | | MCWA) | 1 | E/H;/20H | 709 | | try | 30. | | MCW/d? | | 1/92/2016+ | 130 | | 1.0 | | | MCW.17 | | 1715/2016 | 7 Day | 15 | 1.0- | 1.0 | | MCW-97 | | 1/14/2016 | L.Dur | | 10- | 10 | | M.W.D | Show | 1/15/2016 | 11200 | 151 | 1/0 | 10 | | MIDW-07 | | 1:16.2016 | Dep | | 101 | 19 | | MOWAT | - | 1/17/2016 | 150 | 131 | 10. | 10 | | MCW-IS | 11 50 | 2/11/2014 | the | 35 | 10 | 10 | | 36.0047 | 1 - 1 - 1 | 1/19/2016+ | Day | 15. | 16 | 10 | | MEDIVE (1 | | 1/30/30= | Cler | | - 19 | 20 | | MOW IT | - | 1721/2016 | Day | 20 | 355 | \$40 | | SECVE LT | 1 | 1/22/2015 | Day | | 10 | 10. | | MICRANICE | 1 | 17/21/2016 | -Dec | | 10 | -00 | | M.W.PF | | 1/24/2009 | 1997 | A 4. | +01 | 197 | | MEMORIT | | 1,125,12014 | Day | | 10 | 10 | | MESSOT I | 75-77 | 1/20/2014 | -09 | 4 | 16 | 40 | | MEDU-PI | | - Tr 27//#HS | Day | | Int | to: | | Litera 14 | - | 1,024,200 | (5) | | kri | - 10 | | MUDDE TT | | 1.125-73016 | Day | | -0. | 10 | | MCW/s? | 750 | A2708/2001/6 | 12/9 | | 10 | 300 | | Mr.Watt | | 1/31/2006 | Div | | 101 | -400 | | Juliani | | NO. | | | | | | MOWIN | | E/1/2006 | (Ors | 4 | - 1.0 | 10 | | MENATER. | | 3.52/200E | CIACL | | 10 | 10 | Mr. Kangshi Wang February 22, 2016 Page 7 of 7 | MCW III | | 1/3/2016 | 1 Day | | 10 | 40.0 | |------------|-----|-------------|----------------|-------|-------|------| | MCW-21 | 1 | 19472016 | 33eg | 190 | 10 | 10 | | MCTW 18 | | 1/5/2916+ | Dec | | 1.0 | rd. | | 1680307-18 | | 1/0/2006 | Clay. | | 10 | 16 | | MCM III | 1 | 1/7373916 | Liny. | | 300 | 10 | | MCWH- | | 1/8/2014 | Dist | | - 19 | 10 | | ARCSENIA - | | 17970016 | 1300 | 14% | 10. | 100 | | MORENI | | 1/16/2016 | Dig | 5-11 | - 10 | - 10 | | SACHBUTA. | | T771/2916 | Pary | 44 | -16 | 19. | | MCWNE | - | 1752/2056+ | 43eg | 10.10 | - 100 | - 10 | | 140,739-10 | - | 1713/2914 | UNIT | 5 | - tu | 217 | | MCW/IS | 1 | 1/14/2010 | Day | 51 | AD | 111 | | MCW III | | 1/45/2010 | Esty- | - | AU. | 300 | | MICTORINA | 100 | 7 (16/2016 | they | 10.00 | 70 | (1) | | MUNITED | | 1/17/2016 | Day | | 10 | 30 | | MILION 19 | 100 | 1/18/2016 | Ciry - | 100 | 10 | - 00 | | MCW IX | | -1/19/2016+ | 1293 | + | - 01 | 10 | | MOW U | | 1720/2816 | Pm | | 10 | 10 | | ALCOVITA- | 100 | 1/21/2016 | Op. | 19.1- | 10 | -40 | | 557,10-13 | | 3/22/2016 | Byr | 35 | 10 | 1.0. | | MUNITER | | 3/23/2014 | 17/4/ | | In | 10 | | 56CW-18 | | 47/24/38/14 | Det. | 15 | 1,0 | 16 | | ME 307-18 | 11. | 1.7257,9014 | 304 | | - 10: | -10 | | 567 W 18 | | 1.724/3010+ | Day | (4) | 19 | - 10 | | 3627W-11 | - | 9/27/2016 | 30gr | 5.11 | 10 | 10 | | MEW-bit | | 1/28/2018 | Thy | | (6 | - 10 | | MC WHITE | | 1/29/2014 | D _T | 5 | -10 | 10 | | MCWAR | - | 3/30/2016 | 13rg | < | 10 | 10 | | 30CW-18 | | 4/37/2016 | Lin | 151. | 30 | 10 | ## 63.5 Where with unit sending morphis (collected loss than 72 beam after a day with 100 for each) and the particular more care might sample value to halouide the growness. Periods of 120 are adjusted to come halouid AVIII for the in the collection of the resolution. ^{*} The MWCF is ground promision to repeat our MCW 156 with me special IN treatment MCW 156 no August 14th, 2010 ^{#15}ex of nampling PUBLIC WORKS AGENCY JEFF PRATT Agency Director January 19, 2016 Watershed Protection District Telly K. Glifford, Director Transportation Department. Gavid L. Freinich, Director Engineering Services Department Herpart L. Schwind, Director Water & Sanktrion Department David J. Breek, Dractor Central Services Department Jenice E. Turner, Director Kangshi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) \$76-6780 Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below aummarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of November 2015. Sites were sampled weekly on Tuesdays (December 1, 8, 15, 22 and 29). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geometris were calculated using results from the previous 30 days (actual sampling date marked with •). Weaks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geometri. Half the detection limit was used for the purpose of calculating the daily geometrian for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal coliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the focal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Ewelina Mutkowska at (805) 645-1382. Sincerely Gerhardt Paulmer Deputy Director, Watershall Protection District CC: Tully Clifford, Wasteshed Protection District Ewelins Muthowska, County of Ventura Paul Jorgenson, City of Thousand Oaks (via email) Joe Bellomo, Willdan Associates (via email) Kelly Flaher, City of Agoura Hills (via email) Allen Ma, County of Los Angeles (via email) Table I. Weekly sampling results | | | | | - | The satisfied) | |-------------|------|-----------------|-------------|----------
----------------| | Locum | Time | 0.04 | - 11. tts _ | | - DE-MAL | | | | | | | DUSTRIEN | | CH 97.15 | | 12/1/2003 | | | 1/4 | | MUW Res | | 12/3/20159 | | | Talls | | Social to- | | 12/13/2015 # | | | - Dir | | MEQUAL: | | GL[[0,0](d)] Fe | | | City; | | 500, W-86 | | 121/29/2015 | - | \vdash | Dys | | 36CW-# | | 13/1/2015 | | H | Dieg | | 94000 # | 1 | 12/A/2015+ | | | 157y | | 10.00 | | 12/19/2015+ | | | Dra | | MCW.II | | 12/22/3015+ | | | Dity | | MCW-F | | 13/29/2015# | | | 13-9 | | MEWIE | | 12/1/2015* | \vdash | H | Dex | | MCW-TA | | 72/6/2015 # | | | Dry | | 3400W-12 | | 12/15/2015+ | | | Day | | MCW-12 | | 12/22/30154 | JOAL0 | | 2,400 | | 34538533 | | 72/29/20519 | | | Dry | | MCW/Les | 1085 | 12/1/2014 | - | | 81 | | MOWIE | 845 | 12/5/2015 • | | | 3000 | | 58CW/35 | 745 | 12/15/2015 0 | | 18.7 | 10,900 | | MCMS-Feb. | 1005 | 13/22/30/50 | Danie | | 300 | | MCW Lb. | \$50 | 12/22/20014 | | + | 81 | | AM/SECTION | 1030 | 12/1/2015 | - | - | 25 4005 | | MGW-15c | 820 | 1259/2013 • | | - | 220 | | MCW-156 | 720 | 12/15/20154 | | | 20 | | MCW/Fire | 925 | 17/72/1905 | 2840 | | 200 | | 16CW-15c | 830 | 12/29/20014 | | 40 | 21 | | MOTOLET | | 12/1/2018+ | | | Tary | | MCWIE | | 12/9/20054 | | | Ein- | | MESSET | 1 | TT/19/2011# | 15 | - | Em | | MEDW-17. | | 19772:30154 | | | Dig | | 3400306-177 | | 12729/2015* | | | 184 | | MCW III | | 12/1/2003+ | | | Ties | | 50.70F (1) | | TREECOUSA | | | Livy | | TRETOWN TH | | 2.2018/2018/e/ | | | The | | 6(1)00-138 | | 127.02/0016 A | | | Dist | | LOUGH. | | TERROTANIA | | | Fire | ^{*} The WWEST printed parameter recognition for \$47.00-250; with unit equipment for the Wilson of August 170s, 2000. ⁺ Blac of surplus Table I. Weekly sampling results | | | | | | Strate Series | |-------------|----------|-----------------|-----------|----------|---------------| | Такирин | Dinc | Disc | J. Blaire | | Di veli | | | | | - | | 743.5 3.1956 | | 140.00 80 | | 13/1/2015+ | | | Des | | WE'VE IS | | 12/8/2015+ | | | Tary | | MICTOR-01 | 3000 | 2/13/2015+ | | | 1.515 | | MICH IN | | 12/22/2015+ | | | ling | | MCW Mt | | . F1\23\2014+ | - | | Dry | | 54(20)4 | | II/3/2019 * | | | lzy. | | MEWA | | 12/6/2015+ | | | Diy | | MCMPS | | 12/15/2015 | | | De | | MOVE | | 12/22/2015 e | | | Eny | | MICWEN | | (2,/29/2014) | 1 | \vdash | DHY | | MCMga | | 12/1/2019 4 | | Ħ | ⊃ŋ- | | M6/W-12 | | 12/8/2015+ | | | Day | | MITTER 2 | | 12/15/2805+ | | | Day | | MCDWG/3 | 15-5-5-5 | 12/22/2015 | Name | 100 | 2,400 | | M079652 | | (2/29/2015+ | | | Day | | MCW Hit | 1053 | (2/1/2015+ | | 1 | 80 | | NUCTOR-DATE | 845 | 12/11/001/00 | | | 300 | | MC2WC54U- | 745 | - 12/(15/2045 · | | 12.7 | 9,000 | | MCWirm | 1005 | 15/22/2015 • | Kain | - | 300 | | 14CW (160 | 450 | 12/27/2015+ | | - | 100 | | MCW-IS: | 1030 | 12/1/2015+ | | | 2,400 | | MCW-lite | 825 | /2/W/7015.e | | (K) | 220 | | MCW-15- | 120 | 12/05/2015 0 | | e. | 20 | | MCOW-15e- | 925 | 12/22/2015+ | W- | | 250 | | MCW-use: | 920 | 12/29/2015 | 1/2 | < | 20 | | MISTRE FO | | 12/1/2015 | | | - Din | | MCW.11 | | 12/6/0015+ | | | Day | | MCW-17 | | 12/45/2015+ | | | Jay | | MCW17 | 140 | 12/22/2015+ | | | - Tary | | MOWIT | | 12/21/2015+ | | | Day | | daugasi iki | 1 = 1 | 12/1/20154 | | | Con | | MCW-18 | | 12/8/2015+ | | | Live | | MINV-18 | | 12/13/2015 • | | | Dire | | MCW 18 | | 19/20/2015 | | | - Diy | | BATTAL 16 | | 12/29/2015 | | | Diel | ^{*} The WQCD grand population in option on MCW 156 was on Specially (content MCW-150 on Angel 11th, 2010 [·] Durb of marching | MCW | | 12/12/2015 | Dep | 14 | 100 | 101 | |-------------|-------|---|-----------|----------|---------|----------| | / 何世界 # | | 1.6/14/2015 | Dire | Te. | 10 | 10 | | MCW-II | | 12/14/2015 | ing. | | 123 | -90 | | MCWA | | 12/3A/2015 · | Hip. | No. | 20. | 00- | | 160,302-6 | | 12/10/2015 | Chy | - | 10 | 10 | | 563904 | | 12/17/2015 | Hey: | | 10 | | | 5003009 | | 12/11/2019 | Own | 100 | 10 | - 15 | | ALC:NO:W | | 12/19/2019 | Do | A. | 10 | - 30 - | | MCW II | | 22729F201A | Do | - | Inv | -07 | | SUCW-III | 1 | 1372572011 | Der | 100 | 10 | . 100 | | MOWN | | 12/25/2015 • | Dev | rel | 100 | 101 | | No Patrick | | 12/45/2011 | That | 6 | 10 | 10 | | 16.00.4 | | 12/26/0011 | fire. | | 10 | T m | | 500W.3 | 1 | 12/29/2008 | Dec | | - 10 | | | Month | | THE SECTION S. | The | 1.0 | To | 100 | | ACW T | | 10/27/2019 | Dec | | 10 | 10 | | WEND IN | | 2729-53015 | Der | | 10 | 19 | | No. W.W | 100 | 12/29/2015+ | Thy | | 15 | 16 | | 36.W-0 | | 12/30/2015 | Dig | 100 | 319 | 10 | | 60. W.0 | | 12/51/2015 | Der | - | (0) | 10 | | | | | in fairly | | | | | bacteria: | | /12/1/2013+ | 12er | 190 | 10- | - m | | MCWAE. | | 32/2/2015 | Dep | 100 | 306 | 10 | | MCD9-12 | | 12/5/2015 | Der | -0 | lo lo | 10. | | MEWAL | | 100000000000000000000000000000000000000 | Du. | | 700 | 111. | | HILLY IS - | | 12/3/2015 | Dive | 10. | :50 | 100 | | MUSEUM TO | | 12/4/1015 | Des | 8 | 50F | 311 | | MCRS-4TE | | 17.077018 | -Phys. | CC. | Till | 100. | | MGW-12 | | 9.2/8/2015 • | Dn | | .10 | - (0- | | MOW LE | | 12/1/2014 | Die | | 10 | 7.0 | | NOT NOT SEE | | \$2710.02015 | 130 | | 10 | 1.07 | | MORETE | | 12/41/2018 | Chris | | DH- | 103 | | AND MALE | | 12/32/2015 | Dry | | T0- | 10 | | MCM-II | | 12/13/2014 | Liny | 15 | - 10 | 36 | | ME39/42 | | 7223472015 | 13tg | 35 | 18 | 5.01 | | MCW-12 | | 12115/7015+ | The | 15 | 10 | 40- | | MCM/75 | 1 | 12/10/2015 | Deg | 5 | 10- | 10 | | MOTHER 12 | | AMANTAMES. | Dec | 14 | -10 | 3.0 | | APCW) II | | 7/19/2015 | Dig | 5 | | 10 | | MIC NO. CT | - | 12/49/2015 | Uer | 15 | 10 | 40 | | MCMI-12 | - | 12/70/2915 | Dir | 100 | 111 | 19. | | MOTALTE | 1935 | TANDAMIS | They | | 40 | UL. | | METORITE | 1.04% | : La/dg/20154 | Harm | | 110 500 | -404-240 | | MCMCC. | 1053 | DIAM CRASH | Name : | - | | | | MANAGE TO | 1555 | 12/28/2019 | Hales | - | | | | DUINA 13 | TOM | 12728 301 | Hami | - | | | | NEC'NOCE | 1000 | 0.2/24/25/5 | Figure 1 | \vdash | | | | W0.300.12 | 1655 | -(2)/23/201k | , kiran | - | -3.60 | | | OF SECTION | 115 | QUALITY: | 100 | | | | | 30.9 | 1 | 72/12/0011 | 1795 | | 116 | 1 | |--------------|--------|----------------|---------|------|--|------------| | SELVEN | | 12/11/2009 | 329 | 100 | 10 | 36 | | DAGARAN | | 12/14/2015 | Dig | 1-5 | (0. | 10 | | MCW 4 | | 12/15/2015+ | Thu. | - | 140 | 301 | | M0.76/-0 | | 32/16/2055 | Disp | 5.1 | | 10 | | 880W/9 | | 12/47/2019 | tire | 18.4 | Tp. | 10 | | MX790.0 | | 1271873034 | Chy | 36. | 10 | 30 | | MOWN | | 72/13/2015 | Or | (e) | .70 | m | | DM/30096 | | 12/20/2015 | file | 100 | 10 | -20 | | Strikken | | 13/TIAMES | Day | 57 | 70 | 14 | | M/ 50/ 9 | | 12/22/2015 | Line | | 10 | 700 | | #U W = | | VARIETA | 1510 | | 100 | 101 | | MICSO # | | 32/24/2005 | Dyy | | 10 | 100 | | MUSEA | 1 | 12/25/2019 | Day | | 10 | 100 | | nicwa- | | 12/24/2015 | Owy | | 10 | 701 | | 20176 | | 12/27/8/05 | Dio | 121 | - 10 | 10 | | AIT W | | 12/25/2071 | Dis- | | NO | 10 | | 644.70 | | 12229/2005 | | | 10 | 360 | | nult us to | 1 | 17/30/201s | Tree. | | 10 | Tie | | NO.707 U | 1 | 13/31/2015 | Uny | | 10 | 10 | | 300,00 | | 196 937 98405 | - 1117 | | 74 | 1 | | MCW-12 | 100 | 13/1/2015 | 1707 | - | -10 | 100 | | 385W-12 | 1 | 12/2/2015 | Dis | | 100 | 10. | | MOWALE | | 12/5/2015 | Libra. | | 10 | | | About Co | - | 1276/2015 | 1564 | | 10. | 100 | | MI.WHI - | | 12/5/2015 | Dly | + 1 | - 0/ | - 0 | | 56030.81 | | 12/6/2011 | Dev | | 10 | 19 | | MCW-fit | | 12/7/2011 | Day | 2. | 10 | 30- | | 2017/07/12 | | 1278/2018 | Tir. | 100 | 10 | | | ACWAIT- | | 72/9/2019 | Thy. | | - 16 - | | | MUNITER | 7000 | T24-034-20434 | Thy | | 200 | 10 | | 规则是过 | | 33/34/3002 | App | | 10 | 7.0 | | MCW.EL | | 12/12/2015 | Thry | 51 | 111 | 10 | | 66 W/12 - | | 13/13/2015 | Altry | 8 | +0- | (0) | | PRE-PA | | TZ/16/30/3 | Dyy | 14.4 | - W | 0.6 | | NEW-17 | | 12/15/2015+ | 2367 | 31 | 10 | 16 | | h07W-12 | | 12/16/2015 | -Dip | d | -2,8 | 19 | | ME. Z. 15 |
1.7 | - 1727 PUBLIC | Org. | = | THE STATE OF S | 10 | | MOW-12 | - | -12/(N/2013 | Diy | | -10 | 49 | | MCR/12 | | 12/19/2015 | Dir | AL. | 10 | :16 | | 881° NV. 3.3 | | 19/39/2019 | 126 | 15.4 | 10 | li li | | MGW III | | 12/21/2015 | Day | 40 | 10 | - (0 | | 5800873 | 1066 | EE/22/2025 | fluin | | -1115-1- | 175 | | 46 W 13 | 105.5 | 12/25/301 | April . | | 170122 | - "T.Darl" | | NO.WELL S | LULE | (2//5//2014) | Ratti | | 1111111111111 | - POINT | | MATTER TE | 11155 | - TE/38/5/00:E | Belle | | - Marie | 71 | | WOM: | 1.055 | 27/20/2018 | Bor | | -15 | -1455000 | | MCW 12 | 1955 | 34/47/3805 | 3000 | | | - 0.05 | | METER IS | 1118.5 | 17/4 m/ 10.1 | 300 | | - Tay | | | 345,00.13 | | (3/30/2011 | 10.0 | | 100 | 10 | |---|-------|--|--------|---------------|-----------|-------------| | ME39-12 | | 42/44/2013 | 150 | | | 71 | | | | | | | | | | Mark 189 | 1055 | 1271/20354 | | - | 0.0 | 315 | | 740,794 3-40 | 1/55 | 12/3/2015 | | 100 | 107- | 124 | | 200 W 1 wh | 1055 | 12/3/2/85 | | | 187 | (1) | | Million Lab | 1055 | 12/3/2015 | | | 20 | 111 | | MCW 345 | 1055 | 32/5/2015 | | - | 60 | Jue | | 30000346 | 3055 | 3276/2015 | | 1 | (63) | 104 | | MOVEM | 1055 | 12/7/2016 | | + | 97 | 99 | | Micros, risk | 845 | 12/8/2015 · | | 300 | 76.86 | 96 | | MCW-340 | 845 | 12/9/2015 | | - | 500 | 99 | | M63971 m | 845 | 12/10/2015 | | - | 300 | 90 | | MDW 146 | 693 | 12/11/2015 | | | 300 | 99 | | MD 10.14h | 3.65 | 1201172015 | | | 300 | 30 | | 30.79.146 | 1043 | 10507(2002) | | 74.7 | 300 | 99 | | 540, 107, 146, | 1145 | 4221472015 | | | 100 | 0.0 | | 3.6730 3.6b | 743 | 13/15/2015 · | | | 7.000 | 181 | | 300705746 | 745 | \$2/16/2005 | | | +.000 | 120 | | NEW OF | 15 | 12/11/2015 | | 137 | Aroas | 159 | | TACON, NAC. | 245 | 1227823005 | | | 1000 | 1,00 | | 58/ 92/146 | 745 | - 12/10/0015 | | | 1.037 | 189 | | MCW.14L | 545 | 10/20/2011 | - | | 1/500 | 214 | | Not 70 145 | 745 | 12/37/301E | | | 9/001 | 3/1 | | MC 00:140 | 1005 | 13/23/20/15 • | 20.560 | - | rejected. | - 10/1/16/1 | | MUTAN-AND | 1865 | 191721 OFFI | Tim | - | 110 | | | 360 100 146 | 1005 | 17/34/3015 | Edu | - | -460/694 | - migrajin | | SEC003446 | 1005 | 12/25/2015 | Bank | + | 100.00 | n'(Lint) | | ARTHUAN | 1005 | 12/28/2019 | Zmr | \rightarrow | White | - artilday | | 2017/06/14/8 | 1005 | 2/21/2019 | Jenn. | - | mile and | | | Manual Isla. | 1065 | 12/28/2015 | Habi | - | -8.1 | 414 | | M079-Tel | 850 | A STATE OF THE PARTY PAR | JOHES | | 16 | 311 | | NACTO III | 830 | 10/29/2015 | | - | | -237 | | | 880 | 12/30/2005 | - | | - 27 | | | MITWE | 200 | 1-27 E / 2301 E | - | - | - 10 | LLA | | Michigan Se | 1030 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 47188 | - 140 | | | 1050 | 0.272 #20 (\$ · · | | - | 2,800 | 139 | | MITTER ST | 10000 | 12/2/2015 | | | 1,000 | 13.5 | | MI_SHOEL | 1000 | 31/9/2015 | | - | 2,800 | 1/16 | | April 100 | 1030 | £434/5943 | _ | | 3,000 | 236 | | ADDING SA | 1030 | 41-9/2015 | _ | - | 2,4(1) | 281 | | MO MITTER | 1000 | 12/0/2013 | | - | 2,400 | 339 | | 200 基本 | 1030 | 175-5914 | | - | 2,400 | - ACT | | ADCM: 6c | 820 | 12/8/00/54 | | # | 2.81 | 452 | | MCW, Use | 820 | 12/9/2015 | | | 220 | Dat | | THE PARTY OF | 8.25 | 12/18/2019 | | = | 220 | 810 | | MCW INC | 890 | DEN CONTE | | =1 | 220 | 561 | | MCSCH | 820 | 12/17/19/1 | | 1 | 220 | 340 | | NEW Yes | 830 | 2/(3)2/(F) | - | 40 | 720 | 5,535 | | THE RESERVE AND ADDRESS OF THE PARTY | F201 | P2794/2013 - | | - | 320 | 855 | | MCBLAS | Cwart | 12/15/2018 · | | - | | | | MUNUSE - | 720 | 12/37 (2013 | 1 | 1.0 | 1/6 | 539 | |---------------|------|-------------------|-----------|-------|--|---------| | AUTHOR OF | 720 | (3/44:30n) | | | 10 | 313 | | MORNEY | 720 | 12/19/2015 | | 100 | - 10- | 439 | | MUMERUS | 720 | 12,720/2015 | | - 6 | 10 | 48 | | 367 | 150 | -12391/2015 | | | 10 | 363 | | 5070 | 325 | 127/22/2015 4 | Aus | П |
ordi a | 211 | | SETTING. | 929 | 12/23/3015 | 16.im | | 715 JA | 100 | | MOWER | 525 | 12/24/2015 | flow | | P*Dass* | Phone | | MWISE | 925 | 4209373018 | Name | | HE H | - Huse | | W.W.Th- | 925 | 12,726,0000 | 1.0 | | - | 149 | | NCW.15. | 925 | 12/27/2014 | Ilsia | | 1948-9 | ATTORNE | | ME WITH | 925 | 12/25/2015 | - Water | | 22 ft Spe. 24 | 149000 | | MCW 13c | 820 | \$2/29/2015 · | | 100 | -10 | let 1 | | NICWASS. | 820 | 12/30/2015 | | 1 | - 10 | 288 | | MW.15- | 820 | 12/11/2013 | | | 1.0 | 25/ | | | | | | | | | | MCW17 | | 1251/2003 | Din | m | - 10 | - Cu | | NUCLEUT | | 12 2 20014 | Dn. | 100 | -10 | 10 | | MEDICAL | | 12.13/2015 | Del | - | 10 | iin. | | 340,00.17 | | 12/4/2016 | Div | | 10 | 30 | | MEMPERS | | 12/5/2005 | 1000 | | in . | 10 | | MCW-IT - | 1-00 | 12/6/2019 | 19.6 | | - 100" | - (4 | | MINACET | | 12/7/2015 | Div | | 10 | 19 | | MOWER | | 3.200/2015 · | Dity | | 10 | -18 | | MCSCST | | 12/9/2019- | diam. | | 10 | 10. | | 967,000,00 | | 12/10/9014 | Tary. | | 10 | 1/ | | 34030-07 | | 12211/001 | Day | - | 10 | 1.6- | | MCW/17 | | 12/19/2018 | 1997 | | 10 | 10 | | ME, W. 77 | | 12/13/2015 | Do | | 19 | 16 | | 34CW-17 | | 18/14/2019 | Dr.C. | THE R | In . | 10 | | MCW-IT | | 12/15/2015 | Day | | 10 | .10 | | 46.367.1 | | -12/18/18/19 | Eley | 2 | 10.0 | 10 | | MOWIT | | 12/17/2018 | Day | | -10- | -101 | | 10.36.47 | | 12/18/2015 | Dir | | 10 | - 10 | | 607W-11 | | 12/19/2015 | On | 1 | 10 | 30 | | 54CW-5T | | 12/20/2015 | Liny | | 10 | 10 | | for 10/3/1 | | 272 F70 A | Par | | 541 | - 4 | | MCWAT | | 12/22/2015 | Elly | | 18. | 10. | | NIC 107 117 | | 12722/2001 | Die | | 10 | 1/11 | | MEMORY | | And an artists | .Dry | | -0 | 1,0 | | AUDIOTE | - | 12/25/2015 | Eq. | | 10 | -10 | | SHORT | | TE/20/8009 | 209 | | 16 | 100 | | MUTETE | | 1.1627/2004 | Diy | | THE STATE OF S | 10 | | MIW IT | | XI/08-22049 | 1 January | | io | 1110 | | MERT | | Contract Contract | | | 100 | - 10 | | Total Control | - | 12/20/2019 • | Dry. | | | | | BETTERT | - | 12730y milly | For | 46 | 70 | | | MERT | | 12/25/2019 | Day | =1 | 10. | - UI | | | - | 1000 | | | | | | MUNE | | 32/1/2005 | JJpr. | 360 | -1.01 | 10 | | MOVE LO | - | 12/5/2015 | Day | 3 | (0) | 46. | |-------------|------|-----------------|--------|--------|--|-------| | WOWLET- | - | 13/9/3001 | Div | Age of | 10 | 310 | | MICW-16 | | 12/3/2015 | 150 | | 107 | , in | | MI29/10 | | 53/6/2015 | Dir | | 10. | - 0 | | MOWNE | | 1267/MULE | Jany . | | 40. | 10 | | M-W-10 | | 19 DOWN CHARLES | Day | 13. | 19. | m | | 240,00000 | | 12/9/2014 | -13/9 | 150 | +0. | 1,0 | | ME36-13 | | 127107850 | Lay | 13.11 | | | | MCW/18 | | 12/74/3013 | Lily | 60 | 40 | - 701 | | 64170/201 | | 12/12/2015 | £3g | | 7.07 | -10 | | MCW-M | | 122/14/2014 | Dir. | | 191 | .10 | | August In 1 | - | 12/14/2015 | Xbs. | | 1/0 | 10 | | AMOVE 66 | | 1/2/53/2015+ | Un | | .00: | 50 | | MOWNE | | 12/16/2018 | 15% | | -100 | 10 | | decide 11 | 100 | 12/13/2015 | Dyg | | 70 | THE T | | MUW-ta | 4 | 127.18/3005 | Dig | * | in i | 40 | | MEMI-TA | | - EE/AV/2001 | -Dn | | - (9. | 10 | | BEW-18 | | 12/20/2013 | Dir | | -900; | .50 | | NEW YA | 5-1 | 1273973010 | Thy | 100 | 10 | - 437 | | MCW-M | | 12/22/2015 • | Tim | | 195 | -0 | | MCW-H | | 32/23/2015 | Dir | 12 | 10 | 10 | | MEW-LL | 100 | (27.54/403) | Dry | 76. | 10 | -10 | | MOWNE | FSC: | 12/25/2011 | Diff | 311 | - 10 | 10 | | 拉定使用 | | 927@6730FE | Time | 100 | 1.65 | 1.0 | | MCW-18 | | 12/27/2015 | Thir | 4 | - 35 | 70- | | A02707-18 | 140 | 11/20/2001 | Day | 75 | The same | 3.11 | | MCW:W - | | 12/25/28/54 | Dir. | | -00 | 171 | | 60C700-18 | 70.0 | 12/30/2019 | 320 | 25 | 7/4 | 10 - | ## Maria While will are made another the control of the state of the state of the product of the state greature: "The WWCP4D granted pressures to injunto one WEW 350-with our opposed in greatured MCW-156 on August 17th, 2010 a Danie of mengling PUBLIC WORKS AGENCY JEFF PRATT Agency Director Denomber 21 2015 Kengsin Wang, Ph.D. California Regional Water Quality Control Board Less Angeles Region Standards & TMDL Unit 320 West 4th Street, Sulte 200 Less Angeles, CA 90013 (2131576-6780 Warmaring Projection District Tully K. Clifford, Director Francourtation Department David L. Fleisch, Director Engineering Senides Department Herbert L. Schwing, Climitor Water & Savistion Department Baylo & Sasok Director Central Services Department Janks E. Turner, Director Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang. The table below summarizes the results of the weekly monitoring effort required by the Maliha Creek and Laguan Bactaris TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of November 2015. Biyes were sampled weekly in Tuesdays (November 3, 10 and 24), except for one instance when sites were sampled on Wednesday (November 18) due to staffing conflicts. Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with •). Weaks with wet weather samples (collected less than 72 hours after a day with > 0.1" min) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100m) or for dry weather when no sample was taken. Fecal poliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal soliform objective for REC-1 freshwaters from the LMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regenting this matter, please contact Ewelina Mulkowskii at (803) 645-1382 Sinecrely Deputy Director, Watershot Protection District CC Tully Clifford, Watershed Protection District Eweling Murkowsky, County of Ventura Paul Jorgenseo, City of Thousand Otka (via email) Joe Bellumo, Withfan Associates (via email) Allen Ma, County of Los Angeles (via email) Kelly Fisher, City of Agonta (via email) Table 1. Weekly sampling results | | | | | | Single Sample
(as assopted) | |--|----------|--|------|-----|--------------------------------| | Location | Time | + to.H | Raig | | El colt | | | A Second | | | | (334 MIPN) | | M. William | | 21/3/30050 | | | Digg | | 946 NA-944 | | 17,848/20154 | | | - One - | | #0.7E.W. | | -11/16/2015 e | | | Ritro | | aLCW | | 11/20/2019 | - | H | Dry. | | 8/3/1 | | -17/2/2015 | | | P/rc | | 24073010 | | 10/10/2015 6 | | | 1/19 | | 11:42 | | 13/16/20154 | | | D _W | | HC9- | | 13724/20534 | | H | Dity | | MEDWITE | | T1/5/2015 • | | Ħ | Dey | | THE PARTY OF P | | 11/200000163 | 1 | | LILL | | 4.96.3 | | TO BUTTON | _ | | 1977 | | | | MATERIAL PROPERTY. | | | The same | | | | | | | | | Fig. Vir. | 800 | T1257/254 | | + | 1150 | | WE'W' | 925 | 11/19/4015 | | .00 | 30,0 | | MCW3-FI | 890 | 11/11/2015 | | = | 130 | | 54/5W/186 | 214 | 11/11/25/1 | | | 20 | | latt William | TE | 11/3/2025e | | H | 31 | | HCROOL | 10 | 11.10/2011+ | | 100 | 40 | | at Military | 750 | 11/39/2019 | | 341 | 350 | | la Civilla | 91.5 | 7,17547,3005.+ | | | 3,000 | | MUW/IT | | T7/5/2mie | | | Die | | numbers 1 | | 11/20/2015+ | | | 190 | | STREET | | 31758/00034 | | | 110 | | - | | III CO EDIO | | | - De | | 12/30/jh | | 01/3/2010# | | H | 1500 | | NO. THE REAL PROPERTY. | | ************************************** | | | Lity | | Necros 18 | | 71/11/2015a | | | Taiy | | MUSELL | | 11/24/2015 # | | | - Our | The MAQUE control of the state Allient Street, Mr Kangshi Wang December 21, 2015 Page 3 of 7 Table 2. Computation of daily geomean | | | | | Gad | ingle Sample
instead for rain;
re und NDs) | 60, | |
-----------------------|------|----------------|---------|--------|--|----------|--| | Locations | Time | Dant | Rain | 100 | Econ | E-coli | | | | | | 1 | Here's | (TAS MEN) | (LIS MPN | | | 68(78/30) | | 17/1/2015 | The . | | 10. | 440 | | | MCW-B- | | 17/2/2015 | De | 9 | LUI . | - 10 | | | 1位7W-T0 | | 11/3achms* | 10/9 | | 1.0 | Lit | | | -MEDVETHS | | +10/4/2885 | 17.19 | 30 | 10. | - (b | | | 6.0.16 (8) | | Sheet-Sheet | 1000 | | 174 | 14 | | | 41.9/1 | | 213 76/2007/0 | Day | | 197 | 10. | | | CH190 pm | | 1337/3017 | this | 40.7 | 10 | 40 | | | 60.76 485 | | - TEXTECTIVE - | Lity | 4 | 111 | | | | MEWHO | | 1170/2015 | Tay | 10 | Jiff | 10 | | | 160,797-115 | 1 | 417.500/00059 | Day | - | 40 | 10. | | | WICKING. | 100 | 21373/2013 | r Op. | 4. | 10 | - 10 | | | 50.70(3) | | 13/17/2008 | 330 | 30 | 10: | + (0 | | | (50 m) (b) | | Liverage | Elegan | | Jul 1 | - 11- | | | 7 10 | | THE LONG | Dec | | 311 | 39 | | | A. mark | | LILLAN 30 | JOK. | | 111 | 100 | | | 66.7(G)(D) | | 9175AF28F5 | I V | | 19 | 44. | | | 1000747-894 | | 31/17/2015 | Disc. | | .10 | 10 | | | TME:00-00 | | 27/1E/2015 | Dylet | | (1) | 10 | | | 100000 | | 117 (97:201) | (70y-) | | 10. | 40 | | | 28/2/98-86 | | 37/40/2015 | (319 | 10 | 16 | -911 | | | 34. W (E) | | 31/59/1055 | 1230 | | 10 | I.H. | | | ANDW-60 | | 11/21/289 | Dispose | | 101. | -10 | | | NUMBER | | 0.1173/2001 | May | 31 | 10 | 10 | | | AL 707 LB | | 0729(2005) | 314 | | O ₂ | .0 | | | 1.56E-036-3E0 | | 1.0236740011 | PI, | | | 7/1 | | | MI/AV-thru | | 11/2A/2005 | chy | | TIV - | -36 | | | MCW/se | | 11,077,420EE | The | | IW. | - 18 | | | MENTAL | | H/25/2019 | Dig | +1 | -10 | 70- | | | AUGUST AND ADDRESS OF | | 11/25/2016s | Title | | 1837 | 10 | | | 116795-00 | | 1073072011 | -32m. | | 100 | 1.0 | 1.00 | | | i Thyu | | 19 | | | | MAN | | 11,2700.1 | De | | T UG | | | | 10777 | | 1127/2004 | Der | | 14-1 | - 1V | | | Acres a | | 1/14/1991 | Hos | ы | 10 | -10- | | | 10099 | | 11/5/2014 | Lin | | -10 | 10 | | | MENGE II | | x1/6/2019- | The . | | 10 | 10 | | | | | | | = | | | | | THE TWO TO | | 11,75,7003 | -Thy | - | 10. | | | | MEWA | - | - Filmogatic | EN | -4 | .10 | 1.0 | | | HART. | | THE RESERVE | 1700 | - | 15. | -18- | | | 10.50 | | HICOSTOPA | 23ty | | 17 | 70 | | | 30.74 (| | Tri / Fry more | +m | | 19 | Arr | | | 200 | 70.8230.4 | 16. | | | 70. | |--|------------------|-------------|----------|--------|--------| | 300 | 99,405 | 31=/ | | (0) | 00. | | 10H-992 III | 199,600 | Man. | | 188 | 10 | | - flu West | 1071575015 | 1700 | | 10 | 10 | | - 940 W/ III | 10.21E/2015 | 420 | 46 | - (0 | 10 | | Serter! | - July 27 - 100. | Un. | | 10 | 191 | | and the last | 31/10/2005 v. | Du- | | 70 | 10 | | | Acres 201 | 16-1 | | | -00 | | - | 100 March 1997 | nden | | Jer | Щ | | - Total Co. | | 134 | | | 100 | | and it | - 1 to 2000 | Lie | | JUE | 10 | | 180001 | 11/23/2009 | 150 | | 0.0 | 50 | | Target 1 | 11/75/1015 | Ditt | | m | 100 | | 1870/1 | 4,0725,72019 | On | | 10 | - fn | | NOTE: | 102500 | Ung | | - 11 | 101 | | BUTTER Y | 19/33/2009 | - Dej | | 10 | 100 | | ca. W.1 | | I I I | | 16 | 100 | | S. N.Y | Avancines | | | | | | | 11/25/10/1 | 11.6 | | 10 | 10 | | 2011 | 177-20-347- | 1 | \vdash | 7.01 | - 100 | | | _ | | 1 | | | | All the early | 11/1/2015 | 780 | | 100 | 10 | | 20129-11 | 11/2/2019 | Line. | | -: 10: | 10 | | U/ W 34 | 11/3/39514 | -170 | | - 10 | 10 | | 9.31 | - FI COLD | The . | | 16- | 279 | | 10.56-12 | 1770.79 | Tird: | | 191 | - 11 - | | | 1843 | 136 | | 110 | 100 | | THE 14 | 11/11/206 | De. | | n) | nh. | | MON G | 11,9/2000 | Con. | | 10. | 101 | | DESCRIPTION OF THE PARTY | 1120/2007 | Dn. | | | 10 | | MOWNE | 11/19/2019 + 1 | May. | | | 10 | | MCM/CI | 4.4713.72016 | Do. | | | - III | | NCW ST. | 21/12/12015 | thy | | - 2 | 100 | | 48.96.14 | #17/14/2019 | - liny | | | 18. | | N 8 72 | 50,142,502 | 176 | | | | | 200 | + M/DESign | Dir | | | | | 1000 | - estudants | -17m | 7 | | LUL - | | 360 P. C. | 14/00/00/2 | Mr. | | | 141 | | | 110 pt 166. | "Mir. | | | 10 | | M778.1E | C310743210 | thing- | | | 110 | | Action . | -1/3 | Um. | - | | - 4 | | 25 70 7 | ortage is a | 100 | | - 19- | III | | - 3 E | - 5 mg - 10 F | 10 Jan | | - | - 101 | | 607812 | | 4 air | | 10 | -1- | | 10 14 TH 12 | (11/24)(30/14) | 1,40 | | 10 | -(1) | | A 10 | - San Discount | 40 | | - 5 | | | MINE SE | | The Control | | | - 1 | | 15-77-2 | TE 10 E | No. | | | | | ARRIVE L | 3/25 37 (3 | | | 1. | 1/1 | | M0790-1 | 11129/3018 | (Jan.) | | 40 | 984 | | 19 1 | | 0.7502903 | Div | | - 00 | - 11 | |---|-------
--|-----|---------------|------|---------| | | | | | | | | | New 14E | 0.75 | Constant | | H | - 10 | 1.00% | | Antive Life | 325 | 11/2/2016 | | | 311 | 1,645 | | AND TO THE | 100 | +17/1/2010 | - | | 100 | 1089 | | All as an | 900 | - 30 | | | 300 | 1,000 | | THE PERSON | 100 | 11.00 | | | 7107 | -65 | | DCW3-6 | Bile: | D/540019 | | | 300 | | | 90% THE | -800 | 31/2/2015 | | | 100 | 104 | | MOW THE | 600 | 11/0/2015 | | 100 | 100 | 421 | | MFW 10 | 800 | 11/9/EII | | | 100 | 480 | | Sale Maria | 12/5 | Jan Holanda | | | 100 | - 100 | | SH THE | -036 | 1090/3 | | \rightarrow | 306 | -63 | | 6H M 144 | 70.0 | 01215530L8 | | | 300 | 166 | | - T T T O | 475 | | - | | 100 | TII TII | | | - C15 | 10,10,1700E | | | 800 | | | | 435 | | | - | 100 | | | Service Committee | 75 | The state of s | | | | 70.0 | | NEW YORK | 1675 | 117 0.7041 | | 3 | 100 | 200 | | MSCSET 3-68 | - | 11,12772005 | | - | 200 | | | AND WILLS | 800 | 31/19/2019 • | | - | 1183 | 110 | | MC96-Y+E | 1000 | 107/ UN/2025 | | - | 736 | 1,00 | | MR THE I THE | 900 | 11740. 4055 | - | | 1.10 | | | Marian Late: | 400 | 11/20/00H2 | | - | 136 | | | MCSW-148 | -800 | 11722/1001 | | | 130 | 132 | | SEC 98 174 | 400 | LESS FORCE | | - | 1.50 | 123 | | MCW.Tate | 0.23 | 11/24/2005 | | | 20 | 100 | | UCAP WILL | 03.5 | 0.028/2014 | - | | - N | - 1 | | State of | 795 | TURNORS | | | - | 160 | | LF-20 (9) | 313 | DEC PRO | | - | -5 | Up | | (\$1.70F LLG) | 1 | Transmit. | | 120 | | 1/35 | | SOCIETY (III) | 9.53 | " tribs small - | | - | | 100 | | MUSE Office | 993 | 11/30/2011 | | - | 20 | 11/09 | | | | | | | | | | ST0 74 | 850 | 35.0072003 | | - | 30 | | | M. Bullion | T =50 | | | | | | | MCG FE | 3.00 | -T17 M(2015.▼ | | - | 10 | 1/10 | | UKTY IN | 330 | a commercial | | | 1.00 | 201 | | III. VF 15: | 710 | 11 (N/junt | | | 10. | 17. | | MCW Chi | 30 - | E110 A 52010 | | 24 | | - 111 | | NOTE IN | 230 | 7/1/5/2001 | | | 70 | 110 | | MCW 156 | 730 | 15/4/2016 | | 15 | 19 | -99 | | METWORK. | 738 | A G/Graine | | - | - 10 | 41 | | 2 The Control of | 100 | 3 LT - LOTTE * . | | | | | | 17/90-15 | 100 | TT 1979074 | | | | Al | | | - 302 | 1014 | | - 1 | | | | | 300 | 10 11 | | | | | | | 900 | 11-01- | | | | - 4 | | market of the con- | -0117 | | | | 100 | - 40 | | ALC: U.S. | 1000 | 0.00102380 | | 1.00 | | 1.1 | |-----------------|-------|--|--------------|---------------|--|----------| | THE PARTY | | - PRESERVE | | | | 40 | | Target Par | 34 | DITEMPE | | | 1/e | | | McDette | T30 | 11 201 | | - | 344 | - Like | | AND THE | 1.79 | STATE OF STREET | | | | - 13- | | | 7,0 | 0.000 | | 3 | 41 | - 62 | | MODULTIE | 100 | Discould be | | | 110. | -91 | | MUNE DE | 1 105 | 114,63427fd()+1 | | 40 | 236 | 191 | | WC=./5- | 713 | 14/25/2015 | | | 5/100 | -47 | | . pq === (32- | 015 | 11/26/2005 | | - 1 | 5402 | 12 | | WCM/15c | 015 | -11/47/291m | | District. | 55100 | 64 | | MCMSTA | 915 | 33/20/0/15 | | | 4,500 | 12 | | mrzy\15c | 513 | 11/28/20H1 | | | 1,000 | 45 | | MC0615c | 015 | 91/36/201E | | 3 | 53891 | 717 | | | | | | - | | 1 | | - To 92.00 | | -110 Francis | - | \vdash | - 00 | - 10 | | | | (1/2/m94- | Ole | | 16 | 10 | | 70011 | - | | | | 16 | 1 16 | | - Tar 1 | | 10/1/2ML | The state of | H | - 10 | 10 | | Share | | Mr. ZIII | Disc | | 116 | 1 11 | | KI/CW//F | | 1)1/6/2013 | Lity | | 70 | .00 | | M-12-17 | - | THE RESERVE OF THE PARTY | ERY. | - | 70 | _ | | 26.78.17 | - | V1,52/2015 | -Dn | | | 14 | | Alteria | | 11/1/2011 | 200 | - | 100 | - 10- | | 14 | - | E171-3853 | DA | - | 14 | 78 | | | | CHARLESTON . | - | + | | 30 | | MCW VI | | 11.1027011 | 3.69 | \rightarrow | 10 | 10 | | No. of the last | - | The second second second | Unit | | -56 | | | Marine Co. | - | 31/14/2015 | - 1.fep | - | - 40 | 101 | | MCW-15 | | 13.00/2017 | Die. | | THE STATE OF S | 10 | | MCW-IT | | 11/14/2011 | | | | | | AUCWITE. | | 53/X7/2019 | Dir | |
70 | 10 | | ALC: NO 1 | | The full and have | De | - | - 101 | 10 | | 11(2=1 | | 1-1100000 | 1/4= | | - 0- | 111 | | 112 | | LIPSOIT. | De l | | | H | | Mary T. | | | 170 | | | 100 | | ARTHUR 15 | | 11/22/2013 | Lim | | 101 | - 10 | | AM AR S | | 12,2252,301.6 | Turk | | 3.0 | 10 | | 16 00 00 | | 21/21/20/10 | Tim | | | 100 | | MCK-TT | | 11(23/2905 | T.000 | | | 10 | | | | 1.75 300 | Dr | | | - 0 | | AVCRET | | 1/27/27/2016 | Dep | | | il. | | 160 00/1 F | | 10.800 | 10. | | | 100 | | ARCON I | | The state of s | Limit | | | | | | | 110-1-1 | | | | 10 | | | | | | | | 1 = " | | | | | | | | | | Monota | | 10/1/2001 | Dep | | | - 0.0 | | ALTON A | | VY/ZCTHE - | SUC. | | | 3 - 30 - | | MESSE US | 11/5/2015 • | 1999 | | 1.9 | - 10 | |------------------|------------------------|--------|-----------|-------|--| | normalis - | 0748801 | - Dig | rydli | 10 | -40- | | MACTOR SHIP | 0/40=0 | 179 | | 10. | 100 | | 3.5 | 7.50 | 1. 11. | | - 11 | 900 | | m(//m = | | 09 | | 10 | -00 | | | THE RESERVE | 1300 | | 100 | 10 | | W 12 | APP INTE | Dix. | | 10 | | | Bart Sty (3 p. 1 | 111/10/2011 + | 157 | | - 0 | THE STATE OF S | | M675W-18 | 1/71573093 | Dire | register. | 5.00 | | | MUDVAR | 20/12/2009 | 134 | 16. | 1.0 | - 10 | | hittwith | .0755/301 | L (Fe | | 10 | -70 | | MC2W, 930 | TI/ LA/2009 | Big | | tit | - +0. | | Enthany | 1000000 | Day | | m | 112 | | M0090700 - | THE PERSONAL PROPERTY. | 595 | | - (0 | | | W7424 | 2521312005 | +111 | 100 | - 111 | - Skil | | NEW PARTY | 7 1/ 1/20154 | 300 | | m | 10 | | MEDICINE | 1049204 | Der | 140 | 14 | 10 | | MCWita | 11/29/2019 | Der | 4.1 | 1.0 | 7.00 | | MCDW-18 | 35/31/2014 | | -1 | 10 | 1.0 | | MCWELD | 31/22/2011 | Table | | -1.0: | | | H1700.33 | - 11/2N/MAX | day | 3.1 | All | - 10 | | SE (1- 7) | 4105G3M54 | Elit | | 190 | 100 | | SHCWATA | Mark Devil | - Her | | M | 38. | | No. 10 | 33.120/42/14 | 12ml | | US | -01 | | MERCH - | 1117/101 | Buc | | | 1 | | MCW/TE | 77/28/2015 | 120 | | 16 | - 10 | | Mr., W-18 | 3 1729/2019 | Die | | 18 | -10 | | METWO 14 | 2.17.50.7201.5 | The . | | 19 | 100 | We to real ear exerting suggest from the time of the contract of a sett with $\lim_{t\to\infty}\frac{1}{t}\frac{\partial t}{\partial t}=\lim_{t\to\infty}\frac{\partial t}=\lim_{t$ p = 0 † P = 8WCQCD ground planterior to = planta 2A* 70 (55 = 10 + c (5) = 100) (in sured by Westel an America 2 = 2 for A Chimate - opera- California Regional Water Quality Control Bound PUBLIC WORKS AGENCY JEFF PRATT Agency Director Hovember 24, 2015 Kangshi Wang, Ph.D. Los Angeles Region Standards & TMDL Unit. 220 West 4th Street, Suite 200 Los Angeles, CA 90013 Watershed Protection District Tuffy K. Clefford, Director Fransportation Capartment David L. Flaisch, Orector Engineering Services Department Herbert L. Schwind, 04ectol Water & Sanitation Department David J. Sanek, Director Gencal Services Department Janice E. Turner, Director Subject: MALIBU CREEK AND LAGOON BACTERIA TMOL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wand: (213) 526-6780 The table below summarizes the results of the weekly monitoring effort required by the Mailing Creek and Lagoru Bacteria TMDL (TMDL) Compliance Manitoring Plan (CMP) for the month of Detober 2015. Sites were sampled weekly on Tuesdays (October 6, 15, 20 and 27). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with •). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" ruin) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry, weather when no sample was taken. Focal coliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Reard's removal of the focal coliform objective for REC-1 freshwaters from the TMDL on June 2, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Ewolina Mutlinvolus at (805) 645. 1382 Sincerely, Doputy Director, Watershoot Protection District CC Tully Clifford, Watershed Protection, District. Ewelina Mutkowska, County of Ventura Paul Jorgensen, City of Thousand Onka-Joe Bellima, Wildan Associates Allen Ma, County of Los Angeles (via amail). Table 1. Weekly sampling results | | | | | | South English | |----------------|----------|----------------------------------|-------|----------|---------------| | (Zeith) Advice | 1 Time 1 | O _M m = | Hada? | | EVAL | | | | | | | (238 MPN) | | MORE IN | | | | | 73/0 | | 64/201-55 | | TOTAL PROPERTY. | | | They. | | mir Werm | | us/da/den/i | | | 1319 | | | | DE TERM | | | Tes | | MCWA | | 0.076/3035+ | | | Dw. | | ANT NO. II | | 16/33/2085 # | | | Dhy | | 60 E.S | | 00/20/2014 * | | | The | | AUCE, 9 | | /H/2T/2011• | | | 200 | | 1= W/T1 | | m/wime+ | | | Đη | | PO12 | | 10111/2015 | | | Dry | | A007W/02 | | 107/20/2013 | | | Diry. | | 58(700-1)2 | | 10/27/2011 | | | Dig | | NETTER (4) | WES | Market Se | | - | 7,000 | | A TO LAKE | 1.00 | metacmitis. | | | 14-500 | | 000100 | 11300 | | | | TO ACT. | | 100 TO 100 | 63. | 100 (00/2010) •
+00/20/2000 • | | | 20 | | usculi plan | 900- | 10/0/2015* | | 4 | 7,400 | | MCW 15e | 850 | 10/13/2019 4 | | | . NOU | | MC00-15c | 1030 | 10/20/3015 | | \equiv | 100 | | ar Wire | (50) | 10/77/2015 | | | 20 | | - T | | nout The | | | 159 | | 100200-07 | | m//sranca. | | | (3) | | 241,780-17 | | 30/20/3015 | | | Des | | 3679-67 | | megy/poise | | 4 | DT. | | 10.00 | | 10002004 | | | - De | | Source A. | | Land Avenuella 4 | | | 1000 | | 100 | | 9/20/2014 | | | (ha | | P 4 1 | | (102 (201) + | | -1 | 191 | ⁼ [1]. If W(M) if promise the constant of the set Ethy Longton Table 2. Computation of daily geomean | | | | | Surate Comple
(2) period (results,
thy and NOG) | | Kaleming)) | |-------------|-------|-------------------|--------|---|----------|-------------| | Legator | 1 mes | De. | Burn | | E-sull | 1111年600 | | | | Part Test | | | (2M/MPN) | STATE STEEN | | MCW-0b | | 10/1/2005 | Eq. | | 10 | 12 | | 540,730-335 | | 36/3/3019 | TOTAL | | LUL. | | | BATTSP-185 | | 10.73/2019 | F.Opt. | | 10 | | | 74000 | | 100/4/2005 | -1260 | | 1.00 | 110 | | MCS III | | 0.78.000 | 170 | | 64 | 7166 | | THE DW THE | | - hubbrighter. | Din. | No. | 10 | .30 | | 164±365 (0) | | 00/7/2009 | 1,000 | | 101 | 40 | | Macanies | | 19/04/2015 | Elvi I | 10 | 10 | 10 | | becwise. | | 10/9/2003 | Eller | -01 | 30 | 40 | | MCW-8b | | 16/10/2015 | 1777 | | 10 | 10 | | ALC: W. No. | | 100/11/2015 | Dire | | 100 | | | MCMCBL - | | 10/12/2019 | Dw. | | - 110 | 10 | | 300,00 | | NUMBER OF STREET | Lay | | 3.0 | 1.0 | | 241, 10,104 | | 007140(2015) | Div | | -10 | 10. | | Mary Inc. | | 50/01/20016 | Dec. | 101 | 1.0 | 10 | | DICK III | | -167 J G 72 m B . | The P | | - 10 | 10 | | MCW-86 | | 10/17/2015 | Dir | | - 30 | 10 | | MCW-86 | | 100/14/2015 | Dity | - | 10 | /05- | | 5617W-86 | 1.0 | 10/19/2015 | Day | | 10. | - III | | MOVE | | 10/20/2015+ | Det | | | 10 | | CITIZE SI | | DV33/T004 | The | | 10. | | | Laborator . | | 10071,704 | 1 Lage | | 10 | | | *** | | - Types | The . | | | 19 | | | | DATE: | . City | 57 | 750 | | | MUNCH | | 110/25/3001 | 5/9y | | 107 | 1/1 | | No secun | | 16/25/2815 | Tiley. | | 10. | -194 | | MXCWINE | | 10727/20154 | Livy | | 16 | 70 | | MCW 8h | | 07/28/2015 | Divy | - | 10 | 10 | | MONEY | | 10/29/2015 | Line | | 100 | 100 | | 2.0,250.00 | | 14/36/2014 | Titry. | | 40) | 1.0 | | MAC OF REV | | 1072172015 | Dir | | 100 | | | | | | 1100 | | | | | MOVE | | B//and | Der | | 40 | 10 | | AUT - | | 16/2/2015 | Dire | | 10. |
- 10 | | MUNN | | 16/15/2005 | Dir | 40 | 191 | - 10 | | 66.18.9 | - | 10/4/2019 | 110 | | 10 | 10. | | 26700 | - | 10.77/2015 | Dir | 10 | 10 | - 10- | | OF U.S. | | 1001/2011/10 | Thu | | - 18 | 110 | | | | conflictions . | -Tilve | | | 200 | | 337 | | -10) VIZIVI - | 10- | | | | | | | | | | | -1- | | Marine . | | He . | Fai | | | -43 | | Up les | | 19/10/200 | 17% | | | - 101 | | A) es | | 18/11/2005 | 2.5% | | | 243 | | -885.595 m | 16/12/1019 | Day | | -63 | 10. | |--|----------------------|-------|-----|-------|-------| | Art de Service | WITH SA | -1m | | 11 | 10 | | 941.000.00 | 1973 - 1075 | 100 | | | THE . | | ALC: Yes | 177000000000 | | | Tab. | = 10 | | TALK I | Total State | 376 | | 100 | H | | le gra | 1411 | -04 | | (41) | 10 | | | perul-pers- | Dir | | | 10 | | BALL 2021 01 | 10/49/2003 | Tim | | 10' | 10 | | Carron II | 10/30/2015 • | In. | | THE. | 10 | | XV = | (07/25/7301) | | | | | | W. S. | megl/ams | Jay. | | | 101 | | | | Tite | | | 4.100 | | MCW III | (0=35/2/01) | 134 | 1 | | 10 | | 16 7M7 W | U.S-7, 10-1 | Po | | | - 87 | | ETT. | 10/725-050/15 | 150 | | | - N | | 100 | W/ 10 7013 | 35. | | -46 | 10 | | PACW T | | Lby. | - | 19. | 19 | | MC,46-9 | 10/28/2015 | Die | 1 | -10 | 16 | | 310,30° ii | 17/29/2015 | Dyy | 47 | 19 | 16 | | M00000 | 00/10/2014 | Dix | | 100 | 10 | | 6.61 | 10.70073333 | 30% | 17. | -0 | 10. | | | | | | | | | - H 1/1 | 10 - G LL. | Live | | - | 3.0 | | | | 15 | | | | | JOHN | 44/AGR01 | Thir | | | 15 | | MUDIE | 18/4/2015 | 300 | | 158 | 10 | | MORRELL | 70,000015 | Titus | - | -8- | 16 | | MCW-13 | 10/3/2015* | Dire | 6 | - 10- | 10 | | MCW-13 | 10/7/1010 | Dig | | | 10) | | TelCW/12 | 10/8/2015 | Dr. | 5 | TE - | | | HICH IS | 1979,3415 | 200 | | _0 | - 4 | | STREET, STREET | THE RESERVE TO | 100 | | | | | NOW M. | 1/1/1/1/2014 | Du. | - | | | | AlCare | 04/15/25(18) | Sha! | | | | | WOM-TE | 30/15/2019 | Chr | | | | | MIC GO 12 | - High, 2013 | Fare. | 1 | _0_ | 70 | | 16 图 图 | 00/10/2015 | 774 | | -10 | - Br | | BA W LE | 0.000.700.5 | Day | - | - 10 | | | 0.75.11 | HOLETSON. | | - | | 1.11 | | 3.b di 4.E | | | | -31 | | | 100 | | | | | | | A)(NI-12 | Table Barress (F. F. | 3100 | | - 10 | | | 1/29/12 | 700.33-7 | 1700 | | | File | | MCW/FF | 100230 | 180 | | | 70 | | LOTTE (T | 1000 | 3/2 | | 1080 | 10 | | | HIEROTH P | The . | | | 1.0 | | | 10/25/1011 | Uni. | | 100 | - 19 | | DU. 300 LE | THE BUILDING | 150 | -1 | | | | MCR.LL- | 10/87/2011 | Ding | | | Th | | WWW. | La William | 1.10 | | | 110 | | 2.83 | 1 | 1073972003 | 120 | 1-1 | - 10 | 18 | |----------------|--------|---|------|---------------|---------|--| | 941736-173 | | - Egglat (ELDy)- | 1/20 | | 10 | 100 | | | | | | - | | | | 1640,8801.18 | 9000 | T01/172809 | | | 1000 | 1564 | | SACW-LAN | 18/007 | 50/5/2016 | | | h (04) | 101 | | WC02.146 | -90 | 4172200 | | | 100 | 191 | | 16.6 76 | -906 | THEFTSHE | | + - + | | | | | 4 | the second second | | - | 1/200 | 240 | | ACTIVITY. | 200: | 0.73 (0.10) | | | - 1,000 | | | all Harth | 34.5 | TOTAL COURSE | | | 1,007 | 268 | | MCRAHIE | 307 | 10/4/200 | | 101 | (100) | 269 | | 54CW.110 | 2,73 | 10/3/2015 | | | 0.009 | | | MCW 16 | 923 | 17(79/30019 | | 1.3 | PL044 | 3.00 | | 68.70/146 | 923 | (JAE 1972MT | | | 9,000 | TAT. | | THE R. A.L. | 1 50 | 1871372019 | | | 750 | 7.9 | | TKE 14 | 100 | 1 0 1 | | | A58 | 147 | | 100 | | 2.00 Light (4.) | | | 1748 | 17.70 | | APPRICAL C | 1853 | The second second | | - | (4)(000 | | | Mr. W. TOB. | 835 | here, bern. | | - | 0.6693 | 1,000 | | Tax W 346 | 953 | 30/14/2014 | | | DEFER | 1,363 | | MCW-100. | 955 | 19/17/3014 | | | 16794 | 1,801 | | MR7W7141 | 555 | 120/146/2004 | | | 16,000 | 7301 | | THE RELATE | 355 | 1971972015 | | | 16700 | 3,060 | | MCW 146 | 1919 | 20/20/2015 | | -6-1 | 100 | 3.501 | | 3463E-14E | -1010- | 00/22/2015 | | | 1001 | 1.112 | | All East | 1 date | 14 15 2014 | | | - 10 | 110 | | 137/01/196 | 1000 | 08/20100FF | | | -100 | 1,546 | | Alt. 92 (4) | 1000 | 10/23/1987 | | | 100 | 1031 | | 01070F71 mls. | 100 | 100 TO 100 I | | | 900 | 3.281 | | MCCOLON | 1000 | 10/26/2015 | | | 700 | | | | | property and the find that the first of the structure and | | | 10 | 5,000
April | | 140.70 (14b) | 1.50 | All and the second | _ | | | | | VOC. OF THE | 325 | 10/25/3074 | _ | | - 10 | 2,955 | | 54C0013 His | 即 | TINCALIDRE | | - | - 10 | 24/0 | | 337 W 3 D | 1.125 | TO ME TONS | | \rightarrow | | Land | | WEST OF | 225 | 10/14/2001 | | 100 | | 1304 | | 超電 16 | 750 | 11/1/2017 | | | 0.00 | | | SUNE 15 | 0.525 | 10/2/201 | | | TOOL | 256 | | PACTE SIG | 130 | 601 (200 | | | 1,000 | 35% | | MUSELA | 430 | 10/4/2011 | | | 1,000 | 111 | | MCOD LN | 839 | 10/4/2005 | | | 1,000 | Tal. | | 44:3616 | 900 | | | \rightarrow | 530) | ALC: | | | | MAYA723054 | | \rightarrow | | | | AND THE STREET | 100 | 40,45,301.2 | | - | 5,800 | 573 | | 56.56-15 | 900 | - 30=4/2008 | | | 2,805 | 91 | | ACT IN | 100 | THE STATE OF | | - | Life | 677 | | 60/20/35s | 3900 | 30/38/2018 | | | Z,4GY | PIG. | | MCW/S | 300 | 405 (1530) | | | 5467 | - 137 | | - | -400 | e office from the | | | 2.840 | hit | | | 317.7 | (0)(1222)(14 | | 21 | 3(0 | The state of s | | - | 100 | TO TOTAL | | | | - 144 | | 100 | (CD) - | 200 oct 2002 | | | | 11.7% | | ALCOHOLDS | 350 | THREE WAY | | | 343 | 1,825 | | EP.200.156 | 490 | 16/15/2015 | | 1.74.2 | 100. | 1.890 | |----------------|-------|-------------------------|---------|----------|--------|--------| | MCB-15- | 850 | (d/2)/2ms | | 100 | 202 | 1.882 | | Land L | 300 | I My Marie I. | | | 3/9 | 1987 | | 15.9% | 11100 | 19/20/2017 | | | Sitt | 1/1/46 | | ST. O. | 3000 | THEFT | | | 500 | 1.754 | | differ La | time | 140.2 117.1 | | | - 300 | 1.74 | | HCR Th | 0.010 | OF TREATING | | | | 1,346 | | H1-07 11. | 17710 | sd=81/300 E | | 561 | 103 | 1,044 | | MENVIEW | THU | 09/25/2016 | | | 931 | 11,300 | | MC106-152 |
1000 | (0/24/2015 | | | 360 | 1.000 | | MESSELL. | 9.50 | 110/27/2015+ | | 70 | 20 | 949 | | MCW1le | 850 | 10/28/2015 | | | -20 | 763 | | sacid: 1/a | 850 | 18,729,73015 | | | - In | 46 | | MOTE TH | 150 | THE WAY THE | | | | art. | | 10 T T T | 692 | 16/1/2011 | | | | | | | | | | | | | | MC9-31 | | - our grants | Digital | | | - 49 | | 5(CW/17 - | | 10/1/3/09 | Dir | | 101 | 10 | | ARTHUR TO | | 14/3/3014 | The | | - 6 | 16 | | 16 18 11 | | 11/4/2011 | Din | | - 11 | 10 | | U E I | | - hL/4, 3643 | Lhy | | | 10 | | 400 | | American MANA | 1 loc | | | 10 | | MCWAY | | | | | | 10 | | MUM TT | | H25315 | 319 | + | -0- | | | MCR.L. | | 10/W/E00 | Ultra | - | - 1 | 10 | | | - | 10.75 200 | - The | - | | (1) | | 41 5 3 | | OFFICE STREET | HH. | - | - | 10 | | | | _3071 [F2004 _ | Mir. | H | L Avet | 10 | | MT SEC. | - | 10/11/2015 | Jhy. | | | -01 | | 347,00-11 | | 10/11/2053+ | Dig. | | -10 | - 10 | | MCE IT | | 10/14/2015 | Pu | \vdash | | -19 | | W-11 | | 1071573W/E | Dit | - | | - 1 | | MCB, 11 | | 100(16)/2019 | Do. | | _11 | - 10 | | MOET | | 100/13/2019 | Uby. | 1 | | - 2 | | MEMORE | 100 | 3972972013 | . Dir. | 14 | -45 | 30 | | by Mark | - | -577174014 | 1/4 | | | | | | | 10000000 | 100 | | - 4- | - 2 | | | | -0.0000 (A) (F) | Altr. | | 19 | | | - 11 | | have the | 1962 | | | 10 | | larcat Al | | 4.00 | JBC. | | - 10 | All | | 9.1 | | pacquezin) | 9× | | Ua | 10 | | ACM CL | | SHEET STATE | Eller | | - HE | TH- | | MICROSE | | PHYSBY OFFE | 756 | 24 | - 101 | 111 | | MCB III | - | Other Dist | Del. | | 1.00 | 1.0 | | at FALL | | | 1 | 33 | | -10 | | 1000 | | 0.00 | Mr. | | | 111 | | Arm II | | THE PARTY | | | | - 6 | | Mean-ra | | 100 H (20 F) | - Dec | | | 76 | | | | CHARLES TO STREET TO | | | | 100 | | ofcon an | | 1887 Amerika | 156 | | - | 10 | | 76.5 (48. 118. | | 18073/2005
1807/2005 | Litt. | | | | | - Total | 10/3/2001 | Dec | Set L | | 1.00 | |---------------|---------------------|-------|-------|------------|-------| | set di sei | - 100/4/2015 | Dir | | 10 | 100 | | DOCUMENTS. | 10/3/2012 | 19th | | - 111 | 70 | | 840300 (4) | .09/6/2015 w | Thy | | 400 | lú. | | 3M6/3W-19- | 70/7/2014 | The | | - 4m - | 10 | | 5400W Hr. | U/W/2015 | Lhu | | 19. | 10 | | MENS M | NAME AND ADDRESS OF | 1.30 | 100 | | 7.00 | | harry at | opi(fe/am) i | 126 | | (0) | 10 | | 15.11 No. 10 | QD 135 Bb0 | 271 | - | 10. | 140 | | TAKEW DEL. | (0/12/2005) | Time | | 10 | 14 | | 1600 | | TIME | H | 15 | 5000 | | Section 1 | 10/14/8 | Mit | | - 18 | 100 | | 38 39 78 | 160 150 //2005 | Mar | | (6) | 10 | | Dergot at 1 | - Intriklativi | 1200 | | 16. | 10 | | 1940,700 (3) | (0/1000) | 1000 | | 10 | . 00 | | Stown | 1 - 300 M - 101A | Day | | THE STREET | mir | | Peter 90' (da | - 101179/dot# | 370 | N. | - 74 | 105 | | MODELIA | 44,000,000,000 | Elig | | -6- | - 12- | | 142:700 LA | 797,03/2003 | Thy. | | | 114 | | 18.70 VI | TU/TEGULE | Day | | No. | 1(0) | | J4813W-118 | 10/2 700 | Dig. | | -10 | 10. | | NUW 111 | リルカイガリ | Un | | -00 | - 0 | | 321796-978 | 10/25/2016 | Din | | 10 | 146 | | MC157-10 | 10/26/2015 | Div | | 10 | 107 | | 54CW-18 | 10/27/2015 • | Dire | 4.1 | -00 | .10 | | MF-WEDIA | 00/28/2015 | 200 | 5.1 | 101 | - 1 | | 54. W (9 | 3072572011 | Dr. | | - 107 | 78 | | ALT. | - tilt mante | Date: | | 300 | 1,15 | | 2019-34 | 12 Klaff | Elia. | | 16 | . 0 | Marks with the state of sta ^{*} The ROSE Degree of the Appendix of MCW 1th service special re-current ACW 181 to August 15th 2010 ⁴ Chill of second PUBLIC WORKS AGENCY JEFF PRATT Agency Director October 15, 2015 Kangshi Wang, Ph.D. Culifornia Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 Watershed Projection District Tully K. Clifford, Director Transportation Department David L. Fleisch, Oinclin- Engineering Services Department. Herbert E. Schwind, Oirector. Water & Santation Department David J. Sasak, Oirector Dentral Services Department Janice E. Turner, Director Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONETORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: 12131576-6780 The table below summarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagoun Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of September 2015. Sites were sampled weekly on Tuesdays (September 1, 8 and 29), except for two instances when sites were sampled on Manday (September 14) and Wednesday (September 23) due to staffing conflicts. Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with •). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for uses with results reported as < 20 MPN/100m) or for dry weather when no sample was taken. Fecal coliform monitoring has been discontinued, as approved by the Los Angelos Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Ewelina Mutkowska at (805) 645-1382 Sincerely, Deputy Directive, Watershed Protection District CC Fully Cliffort, Watershed Protection District Ewelina Mutkowska, County of Venturn Paul Jergenses, City of Thousand Oaks-Joe Bellomo, Wildan Associates Allen Ma. County of Los Angeles (via email) Table 1. Weekly sampling results | | | | | | ingle Sample
(as sampled) | |----------------|---------|----------------|--------|-----|------------------------------| | Location | (Dec.) | Dage | Hitter | | Fis codi | | | | | | | CAM MEN | | | | - strikers - | | | | | M.W. | | 2/11/10/15 # | | | - 0 | | 10 70 39 | | 1.0147201541 | | | 407 | | MCW/hb | | 1623/2013/ | | | The | | NACQUES: | | 9/29/2005 * | | | 10m | | | | | | | | | 3807W IX | | 9/1/20/5+ | | | Phys | | IMCD0-9 | | 9/11/2015 | | | 101 | | IME/INC. | | 8/14/2015# | | | li) | | mild species | | 3/15/25/50 | | | 1199 | | MEWIN | | 1/25/20194 | | | Let . | | | | | | | | | AMONTH | | 4/1/2015 · | | | Phys | | AnioWvera | | 9/8/2015+ | | | Dry | | h6'W-CL | | 3/14/2005+ | | | Day | | MCW EF | | W/23/2015-e | | | Din | | MIDW/CI | | 11/23/2015+ | | | Dry | | | | | | | | | MACHER HE | 1000 | (V) (2006 m | | 7 | -400 | | SECTION LICE | 1986 | The facilities | | | 1926 | | MCW-196 | 1100 | 9714-7205 | | 27 | 201 | | MCW-You | 840 | 9723/2h 3+ | | | 330 | | MUNCH IN | 100 | NUMBER TO SA | | 3 | 5/8/8 | | | | | | | | | MC39-154 | 930 | (/) F3015+ | | E. | 21 | | 24173071.54 | 550 | 9/1/20/14 | | | 601 | | MCW 1% | 1140 | 1/31/20159 | 1000 | 100 | 30 | | ME WALLEY | 811 | 5/21/2015 · | | - | 3,000 | | MK76-15 | 850 | 7929/20159 | | - | 3/10/7 | | 96.3611 | 1 | 3/4/2015 | - | - | - Zec | | F 10.7 T | | 5/8/2011 | | | Libr | | NUMBER | 1 | 9711/2005 | | | Lb- | | AR WHITE | 1 | W/22 CHILD | _ | - | Tital | | or attract | | - PERMITTER | | - | Get | | | | A CHARLES | | | 1417 | | McW-III | | W17200AW | | | . Um | | Note: Note and | | 118/2003 P | | | Tita . | | MORETTE | | 371400000W | | | - 19 | | BAC-R1 (T) | | 6005/200km | | | 1 | | 447 107 100 | | 5 (25/2005 A | | | Le | The RW 2018 growth processor is recovered by W 1994 and a signal of the control of the State All of heights Table 2. Computation of daily geomean | | | | | Single Sample
(adjusted for rain,
dry and NDs) | | Geomean | |-----------------|------|------------------------|----------|--|-----------|---------| | Locusin | Tome | Dute | Rain | | E. coll | B. codi | | | | | F | | (238 MPN) | | | /MESS #5. | | 1071/2003/W | L. David | | -19 | 10 | | MOVED | | 1/2/2005 | 1 King | -6 | - 0)- | 10 | | THE SW -10. | | FRAIRSON | J. More | | In . | 10 | | - 47 37 4 | | Trol/2019 | 120 | | 10 | 10 | | W. W. J. | | 1.07472004 | Disc | 50 | 10 | 10 | | AF Will | | 1997201 | Day | | 16 | 117 | | HAT WORK | | Williams | Die | | 10 | 1.00 | | national ale | | CONT. (2023) 4 | Ties. | | 19 | 197 | | SAFETY BUILD | | 470/2010 | 170 | | .00 | 1/1 | | #4000 No | | 9/10/2004 | OEDA- | | 201 | 10 | | OF 17 40 | | 973172065 | E ADV | | 100 | 70 | | NOT WEST | | 9/12/2015 | 1.1264 | 40 | - 90 | - 210 | | Advise do | | #/33/2019 | - No | | 10 | :10 | | ABOW. IL. | | 9374/2015+ | DE0 | | 10 | 10 | | MITTO 80 | | W/15/2019 | E200 | 7.1 | - (0 | 10 | | NAME OF TAXABLE | | 9/16/2015 | Erry | | 10 | 0.0 | | NAC WE ARE | | 9/17/2015 | 57er | | 14 | 10- | | 101,02,65 | | 1/41/2000 | 100 | | | 1194 | | | | 3279, 0105 | 150 | | | 163 | | ATT. | | 73/00/2015 | 18n | | | /102 | | 40 10 10 | | 2/07/10/10 | 100 | | TU TU | 10 | | MOWNE | | E/76/2019 | JPm 1 | | 17 | 16 | | Mic W-mi | | 9/23/20154 | Dec | 51 | 70 | (0) | | MEDICAL DE | | 0/24/2011 | 311 | | 10 | - 10 | | MIC 97.90 | | 9/25/2018 | 1344 | | 16. | 10 | | MCWA | | 0/35/2015 | Dire | | 10 | 10 | | MUZIW | | with the land | 161 | | - 1- | 18 | | M1/W-F | | 1036(311) | Day | | 100 | 140 | | MCRO | | 9/29/2015 • | 136 | | | 10. | | DIT YES | | 7 M/2014 | Do | | | 70 | | | | 720000000 | | | - 10 | 272 | | MCWIT | | 0/1/2012:0 | Dir | red . | 10. | - 01 | | Mc/92:91 | | 9727505 | Dry | 4.7 | 70 | 10 | | AND RE | | .01/97/2016 | 1,600 | | 10. | - (0) | | 1951901 | | 1.001 | 10-1 | | | | | 0.000 | | 100 | | | | (0) | | 101 1111 | | | 100 | H | 10. | -0.0 | | SAME. | | 7-10 | | | 10 | -101 | | ARC FOR | | 9/6/2015 • | Dire | | 10 | 10 | | B-AC Million | | | | | | | | | | 409/3001
20/00/0042 | 249 | | O.E. | 10 | | 3479/ | | 17/10/2013 | 537 | | Hir | 191 | | Admin | | 1/11/2015 | Don. I | | 10 | 3.00 | | 14.307 | 10.02(20) | Det | | 10 | 10 |
-------------------------------|---------------|---------|------|--|--------| | ALC: U | - Actions | 110 | | | 70 | | RECYCLE | 3031130174 | Die | 1-7 | 400 | | | ALC: (00 to | | 13% | | 10 | - 104 | | Maria | 1035988 | 1 | | | - 0.0 | | | 1/2014 | 100 | | | | | and the house | MACTES. | De- | | 16 | 101 | | AR NO. L | X/19/2004 | Post | - | 10 | 147 | | | | | | | | | A Property | 9/30/2019 | D= | | | 111 | | 865296/9 | 9/21/3815 | Det | 76 | 18 | 100 | | | 6/22/2016 | Dig | - | W | B- | | MCWA | 9720,/2013.4 | : Disc. | 10.1 | +10. | 30 | | MORE TO THE | - THE | THE | | | | | 4.67 | 620(3)() | 1.00 | | -10+ | | | | | | 100 | - 10 | - 1 | | | | | | 10- | | | intty most | | 7- | | | 11/ | | TREATMENT . | 2/29/2016+1 | 110 | | 14 | 10 | | THE NO. 11 | 0.56720% | Line: | | 119 | | | | | | | | | | | | | | | | | MUNICIP. | EN1/20134 | tue . | | 11.0 | 100 | | MUDICIPAL | E23/0 | TOWN | | | | | MURITINE. | 10.00 | 100 | | _ | | | All/W-V | - 0.75 | 1.1 | | | - 07 | | A 100 C | 1000 | Dec | | - 14 | 100 | | NCW IZ | 926/III) a | Dec | | 18 | 0. | | M60/W/11 | B/F/2018 | Div | | | 0.0 | | W00206.3E | 970720015 | Dis | | 318 | 10 - | | Money | 0/072015 | Do. | | 100 | lie. | | Martina | - Frim 200 | fine | | | -000 | | | -97(0,(T0))- | 176 | -1 | | -000 | | | 1 | | | | U)- | | -3 | The second | 1 | | | TIN. | | month on the | STREETHING. | Tim: | | 110- | 10 | | Scored . | - 47 m THE | 50 | | 16 | 16 | | MCR-UI | 7/16/20115 | Bert | | 16. | 10.7 | | MOVELL | W/11/c3015 | | | 10 | 111 | | McNeda | 3/19/2015 | Dist | | The state of s | 770 | | MCW-15 | 9/19/2005 | 100 | | | 10 | | AND REAL PROPERTY. | 0/20/2006 | T.Com | | -100 | - 101- | | ALC: U.S. | 23.400 | 144 | 77 | - | | | 200 00 12 | V/0231900 | 7 | | | | | ADDRESS OF THE REAL PROPERTY. | 100000 | 10 | | 7.6 | - 3 | | AUTOM TO | #5A/201 | 1.64 | | 16- | 10 | | AUCHERS. | 0.040.004 | (Ja | | 10 | - 11 | | ALC: N | 1200 | Tile 1 | | - 10 | - m | | | 1/27/12/99 | _ | | 10 | - 11 | | 431 | - 15 C - 4073 | | | +0 | (1)) | | | 1/29/gm la | dis | | 10 | | | MCW-CL | - | 9/30/2003 | Tiry | | 140 | 10 | |------------------|----------|---------------|------|-----|-------|-------| | | | | - 3 | 1 | | | | | L STREET | THE CONTRACT | | | 100 | 1005 | | W | code | The said | | | 4101 | Tell | | 100 | 1-1-1 | 100 | | 13 | 400 | 1,070 | | 40.00 140 | Figure . | U-CHE | | | 400 | 1,120 | | All His Mary | - Food | 1015 (7019) | | | who- | 1343 | | WC000346 | Figure | 1/6/2016 | | 6-1 | 100 | Tel | | MCW THE | - 10000 | 9/1/2015 | | | 930 | 1,788 | | MCBC14 | 1000 | 971/mil 5 m | | - | 100 | 1,(1) | | MACRO COMP | 1010 | 101/2011 | | - 3 | 900 | 1990 | | MEDE 14k | 1010 | REGISTRATE | | - | 800 | 1.067 | | - W. Talle | DAD | 0/13/Sinth | | 7 | 901 | 1:01 | | W. 18-14 | 1000 | OLICE DE | | 100 | - FOO | | | LET LET | TOTAL | 10000000 | | 31 | 500 | 791 | | NO. World | 7.00 | W14/2015 e | | | -10- | 775 | | MCW-Lat | 1.000 | 971372019 | | 4 | -10 | 3037 | | NOT HE | T106 | W/Y6/2015 | | 81 | | - 656 | | MCWalth | Tung | 9/17/2019 | | | Mi | 150 | | MOWITE | 7400 | 6318/2015 | | -61 | 10 | 201 | | Name of the last | 1000 | # 65/2019 | | | 100 | 200 | | 500 W. O. | F (He) | - F100 | | | -00 | | | 2H 20 L10 | 17000 | T 4 2004 | | | la. | 1.5 | | D 9 18 | Tipe ! | F3(7H) | | | 341 | 110 | | SCALING COL | 19-02 | 0.723720004 | | | 150 | 118 | | OF WHAT | 1980 | 14/24/2005 | | | 199 | 119 | | 840704-104b | 840 | 78/29/2006 | - | | 230 | 125 | | 860784-E4E | 3840 | W/26/2019 | | | 130 | 121 | | MC W Arris | 840 | 1/27/2015 | | | 3.50 | (12) | | MCCWF-HSD | .540 | V/38/3013 | | | (520) | 13 | | 4 | 300 | E MANAGEMENT | | - | 3,000 | 1.74 | | distri- | -500 | William . | | | 3.800 | | | | | | | | | | | MUNITED TO | 116 | 121770110 | | 4. | 400 | 79.6 | | 0.74 | 1160 | 1/2/2015 | | | 200 | 553 | | Marw 15 | 430 | 2/3/2015 | | | 400 | 1.07 | | 10-11- | 936 | Williams | | | 10 | -194 | | Miller, Ser | 930 | 2/1/0011 | | | 10 | 494 | | GCBn (July) | 3210 | 4.64/3010 | | | 7.0 | TITL | | 0.0867.00 | - #TD - | F/TC305) | | | - 34 | (III | | 0 1 - | | - in 100-lay | | - 1 | 1800 | | | NO. S. | - 1000 | 20/1 | | - | 8007 | - Bri | | COCCUPAL | Tall | 5.0000de - | - | | Medi | 341 | | Marin Phil | OWN | 370,000 | | A- | 200- | 289 | | ROW) He | 930 | 9/44/2005 | | XI. | 100 | 226 | | dicellate - | 1930 | 5/13/2/(15 | | | 100 | 754 | | V0.7W132st | T140 | 3234 (2014 m | | | 10 | (II) | | MCW/05 | 11140 | V753/2009 | | +1. | - 10 | | | ur/dsl. i s. | 1740 | DELIGIZATES - | | | 10 | | | AMORA IS
AMORA IS
AMORA IS
MICH IT
MICH IT
MICH IT | 1140
1101
1700
1001
1000
1000
1000
1000 | 3/14/2/05
3/06/06/06
1/23/20/16
1/23/20/16
1/24/20/16
1/24/20/16 | | | \$500
\$,000
\$,000
\$,000
\$,000
\$,000
\$,000
\$,000 | 14
41
81
88
69 | |---|--
--|----------|------|---|---------------------------------------| | MCW II | 1700
100
100
415
412
815
815
615
617 | 9/10 1
9/06 1
1/23/2016 •
9/25/2016
9/26/2016 | | | \$500
9,000
\$,000
\$,000
2,000
9,000 | 14
41
88
62
E1 | | MCW IT | 1700
W15
W15
W15
W15
W15
W15
W15
W17 | 1/21/2016 * W/24/2016 * W/26/2016 | | | \$500
\$,000
\$,000
\$,000
\$,000
\$,000
\$,000 | 14
41
88
62
67 | | MCW IT | 1100
918
918
819
819
915 | 1723 Jan 15 4
1672 (1823
1972 (1823
1972 (1823)
1972 (1823)
1972 (1823) | | | 3,500
3,000
3,000
3,000
3,000
3,000
3,000 | 14
41
81
88
68
67 | | MCW II | #15
#1E
81E
81E
#15
#15 | 1721/2016 #
W/24/2016
9/26/2016
1/26/2016 | | - | 5:500
3:000
3:000
3:000
3:000
3:000
3:000 | 44
88
69
67 | | AMORA IS
AMORA IS
AMORA IS
MICH IT
MICH IT
MICH IT | #1E
81E
815
#16
#17 | 9/39/3015
9/35/3015
9/36/2015
4/3 = 4/3 | | - | 3,000
3,000
3,000
3,000
3,000
3,000 | 88
69
67 | | ANIMA PE
ANIMA VE
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICH | 815
815
±15
(17) | 9/25/2015 | | | 3.000
3.000
3.000
3.000
3.000 | 88
69
61
11 | | LICAL VILLE | 815
114
117 | 8/26/2018
1 = 1) • | | | 3,000
3,000
3,000
3,000 | Er | | LIN MOTOR IN MICKETT MICKETT MICKETT | 815
114
117 | 8/26/2018
1 = 1) • | | + | 2,000
2103
0,000 | 11 | | MCW IT | ALT. | 4 = 1) • | | - | 2105
0.000 | # # # # # # # # # # # # # # # # # # # | | MCW IT | The last | 4 = 1) • | | | -0.000 | - 01 | | LIL OF THE
MCSE 17
MCSE 17
MCSE 17 | The last | | | | -0.000 | =1 | | LIL OF THE
MCSE 17
MCSE 17
MCSE 17 | 1.10 | | | | Sim | - 10 | | MCSC-17
MCSC-17
MCSC-17 | | #/1/20154 | | - | | | | MCSC-17
MCSC-17
MCSC-17 | | 27/1/100154 | | | | | | MCSE-Y7 | | THE RESERVE OF THE PARTY | Mig | | 30 | 30 | | MC30 1.1 | | 30/1/2203 | Day | | 3.0 | 10 | | | | 2,120,0077 | Dir | | - //till | - 11 | | | | 9/4/2016 | Uij. | | 160 | 19 | | War. | - | 3/5/2005 | I be | | 0.0 | 7,0 | | MESS IT | | 1000 | Die | | 100 | | | 607 90 111 | | 107,87 | Digg | | 40 - | 100 | | 0.000 | -5 | 100年20月1年 | Dec | | 1.0 | Te. | | ACTIVITY. | | 1977 1979 | 114 | | 7.0 | 10 | | The Y | | 97/10/2015 | Uo | | 100 | lip_ | | W. W. L. | | 10/22/2005 | 13.89 | | 16 | | | WIND IN | | 7/11/70/06 | Liso | 394 | - 10 | 10 | | ACRES. | | 9/13/2015 | Die. | | 140 | 10 | | New (n | | 1/104/2013 • : | She. | | | m | | 36-38-6- | | TWO MANAGEMENT | 350 | | 191 | 10 | | AN T | | - PRE-201- | P. Laure | | - 11 | 10 | | METER 15 | | - I-ILenn | City | 14.7 | 10 | 10 | | | | 19.1 (4 CENT) | Dit. | 12. | 10. | - 01 | | 0.00 | | 1777 | Dys | | 10 | - 101 | | UT SEE | | 9/10/2015 | Om. | | 10 | - 10 | | WC-9-1- | | V/21/2010 | Old | | 196 | (n | | WE KITTED | | 97/2022/2019 | Hit | | - in- | - In | | 01C28E3 = | | 19/gh/25/5+ | Org | | .10. | 101 | | Marie I | | 0,/39,039(3 | Og. | 1 | 10 | 10- | | 10 - 12 - | | 9729/2019 | Dur | | - 10 | 10 | | Marie La | | - 00200000 | Ug | | | 10 | | ALC: Y | | - THE | Ling | -1 | - | H | | MD4-II | | 1111 | 3/60 | | 111 | | | | | The most | 367 | | 14 | 00 | | 101-01 | | - base Elli | THY | - | 70 | - 7.0 | | | | | | | | | | WT I | | 0.0122010+ | 23.00 | | -00 | | | 100.0072 | 22.65mm ii | 17m | | 10 | | |--------------|------------------|------------|-----|-------|--------| | ME30116 | 1/1/2001 | 1- | | -10 | 70 | | 300789 A R | L. Capital | 100 | | - 10 | | | TACTOR - I | - 174-101E | Libe. | | HI. | 1.0 | | Name and the | 37707018 | Con. | | 101 | 100 | | MCWS | 76/4/20114 | Dig | | 10: | 10 | | 10.76.79 | auto-mode | Street | | - 700 | 10.0 | | MC2W-18 | 9/10/2015 | Die | 4 | 10 | 140 | | NACW OR 1 | 1 10/71/2005 | ЗЗас | 9 | 10 | - 100 | | 1667 W. 3.3 | 9/12/2011 | Ro | | 10 | | | MCW-10 | 9/13/2011 | (Flag | | 70 | 1 Like | | MUSY NO | 921472035+ | DAY | | 70. | III. | | BICALBO | 97.1672015 | 400 | | - 10 | JE. | | MORING | BIA 677005 | The second | | - 0 | 10 | | SICW/H | 9/13/2019 | Chin I | | 1.00 | - (07 | | MENHALL | Ny hamatra | 1201 | | 1111 | 10 | | 100,000,000 | 9/10/2015 | 1767 | 4:1 | 10 | (0 | | MITTER | 9/20/2015 | Doy | | LU _ | in in | | M4CW/ M6 | 9/21/2015 | Divil | AL | 10. | III | | D009E16 | PEN200 | ATT . | | 510 | 1.0 | | 10F7W/10 | 10/80/25(14.4c.) | 1000 | | 10 | | | MEDWIE | 9/24 (SU(4) | :201 | | 11 | 180 | | MCWILL | 6025g3016 | 35 | | 10 | 40 | | MORN | 0.5070 | Leu | | - 10 | 10 | | MCWIV | 9/37/3013 | Dig | | -49 | -50 | | WCW II | 9725/303 | ·Day | | 10. | 111 | | 24CW 18 | 3/29/2015+ | Dir | | -10 | - 00 | | MUM LIL | 1/16/2015 | Din | 601 | 20 | 1.0 | Control of the second second published on the III was the supplied that the second of to an interest of the second o The Object Committee of the personal file Waller on the artifects WICH STREET PUBLIC WORKS AGENCY JEFF PRATT Agency Director September 21, 2015 Waterened Protection Director Tuily K. Clifford, Director Transportation Department David L.
Fiellsch, Director Engineering Services Department Herbert L. Schwing, Constin Willer & Santation Department David J. Basek, Director Comrai Services Cepartment Janice E. Turner, Director Kangshi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit. 320 West 4rh Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subjects MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of August 2015. Sites were sampled weekly on Tuesdays (August 4, 11, 18 and 25). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geometric were calculated using results from the previous 30 days (actual sampling date marked with +). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geometric. Half the detection limit was used for the purpose of calculating the daily geometric for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal coliform enonitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Ewelina Mutkowska at (\$05) 645-1382. 7. Gerhardt I Jerman Deputy Director, Watershed Protection District CG: Tully Clifford, Watershed Protection District Eweling Murkowska, County of Ventura Paul Jorgensen, City of Thousand Oaks Inc Bellomo, Wildan Associates Allen Ma, County of Los Angeles (via email) NO. Table 1. Weekly sampling results | | | | | | Mingle Sample
Van morplest) | |--------------|--------|-----------------|------|---|--------------------------------| | Lipsailles | Time | Dulg | Rain | | Tapoli | | | | | | | - C353/0P30- | | 50.35 | | 12/12/2015 | | | Dis | | 24620 | | 700 £ (7/2019 € | | | 1277 | | 0.07,500.000 | | -ig/18/30/5× | | | 13/4 | | 35CW-5 | | A/15/2013 e | | Н | £/ ₁₇ | | 141/99/80 | | 0.703.004 | | Н | 10. | | 507574 | | A/A) dalah 4- | | | Div | | 64 CB 7 | | - 9719/=15+ | | | Time | | - Markin | | #/24/301h4 | | | _E\tilde | | MCW 12 | | #/4/2015+ | | | Dig' | | 567W-12 | | 921192015 w | | | Zhir - | | MOW III | 4 4 | 3/10/12/15+ | | | I/m | | NOC BUILD | | 10202011e | | | Zhj | | | 100 | 0.74/2019/8 | | | 2/01 | | W 1/10 | 100 | 8719720514 | | - | 2.4(4) | | HILW His. | 3100 | 9/19/2003 * | | | 16,000 | | 4079/19 | 900 | 5775/3034 | | = | 130 | | | | | | | | | 16.11-35 | 11,000 | #=1/2009+ | 1 - | | - Nico | | EW S | 1000 | 9717/38774 | | - | 5.00 | | MC30036 | 1000 | A FEBRUARIA | | | - 3 (day) | | OF WILL | 9(3.0 | 4521/20054 | | | -\$0 | | MGW,17 | | #/4/20/5#: | | | Un | | M(2054) | | 8/11/2/054 | | | 1.09 | | 640,000,000 | | ## H#/25/15* | | | De | | 18/97 | | 4/25/2015* | | | T64 | | - | | 41020014 | -0- | | Dis | | S T 0.0 | | 10/11/2019 | | | Thy. | | HEWLY | | 0/18/2959 | | | Line | | Lit.W.S. | | 0725-20014 | | | the | the 000 KH gap of Lemma best and 000 KH. We have a factory with 000 KH and $100\,\rm km$ ⁺¹¹ Table 2. Computation of daily geomean | | | | | 1.10 | mgta Sample
(masa) Parada,
(manad NDs) | Georgiano | | |---------------|---------|--------------|---------|------|--|-----------|--| | Disting | 11 tors | and 1 | Date | | E sell. | U. Other | | | | - | 111/200-2 | - | - | (245 AIRN) | THE MINT | | | MCW-86 | | 3/1/2015 | The . | 15 | - UI | 10: | | | 00 00 年 | | Actions. | 170 | 13 | 300 | -10 | | | | | 4/4/2015 | 134 | | AII | 1.0 | | | | | DOME III | | | 111 | N.E. | | | | | 1 100 | City. | 374 | | | | | - 7 | | State Burn | 100 | | - 10 | 10 | | | MESV-W | - | 1877 KD015 | Day | | 701 | ţu: | | | W Ab | | 9, K, 200 E | Day | | | (III | | | NUMB | | 表/S/2015 | Dir | - | 49 | 19 | | | SATTW-8b | 100 | 1/10/2011 | Tolki. | | 10 | 10 | | | 24/2/07/46 | | ACT 1/2015 · | Day | | - 10 | 30 | | | SMTW-dh- | | 4/13/3013 | 175 | | -00 | 19 | | | Let Unique | | ARCES | =0 | 147 | All I | | | | AUC William | | 8/24/7011 | 20 | | 7.00 | THU'S | | | MEDICAL | | 4711/2015 | 430 | | 100 | 111 | | | - 400年年 | | - 8/16/7mt | 170 | | 10 | 19 | | | MUVICE | | W/13/Z015 | Tity | 15 | - 107 | 10. | | | MILW-88 | - | 0.719/2015+ | Div | 100 | 101 | 100 | | | MITW-86 | - | h/19/2014 | 1,554 | | 10 | 100 | | | MINE | | 872072015 | FBrt. | 195 | 101 | (10) | | | 860 SESE | | 6/2 (200) | 200 | | 10 | - 48 | | | NATTE AND | | ALC: U | Litter. | | 311 | 18 | | | H. K. | | 6.25.200 | Sand. | | - 11 | 10 | | | Marie Control | | 100000000 | J. Line | | -3 | - 4 | | | Bef. 9- 700 | | 1.5 00% r | - The | | - 10 | 19 | | | DESERTE. | | 6/28/2015 | -Uha | 100 | 300 | 10 | | | Figures. | | 70/27/2018 | Liby | | | 102 | | | MCWau | | 8/28/2019 | -Diy | 3 | 10 | | | | AC.700.88 | | 87/297/26/AE | D_{H} | | _0 | 10 | | | MCWA | - | 8/50/201E | Dig | | 10 | 1.0 | | | 10,100 | | 8,8172/10 | 136 | Н | 16 | .198 | | | (7/1/V) +- | | 7/1/20/0 | Dec | | 18 | 100 | | | 2/± | | 4/1/2003 | 3341 | m.C | 400 | 19 | | | JHEW I | | - 4/5/3013 · | 155 | 100 | 100 | 19 | | | SUPPLY - | | 874720354 | 265 | 100 | 10. | 10 | | | 100 W.A. | | 1/4/2015 | 200 | | 10 | 111 | | | 14 0 | | 0.560015 | 70.0 | | 104 | 70 | | | lear. | | 119/10:3 | Live | | 10. | 100 | | | 1879.11 | | #W-02044 | The | | 10. | - 18 | | | 631 | | - 075500 | | | | - 3 | | | | | | 170 | | | | | | (8.32) | | 1.01063011 | 5.00 | | - 110 | 100 | | | 76.77 | | With thirty | . Oa. | | 100 | 10 | | | Self-with the | [APRASSICAL | Lin | | The contract of | 110 | |---------------|---------------------|---------|-----|-----------------|--------| | WORT I | 1/17/2014 | Fin | | 10 | 100 | | WHAT I | \$219/201s | Line | | 40 | Jel . | | 10.7V = | 2/05/2005 | Div | | 10- | - 12.5 | | 100020000 | #11k22019 | 190 | | - 44 | | | Militaria | #1///mn | | | | | | THE AM II | N/HOTOLOG. | 0 | | - 11 | 100 | | 40.000 | B/107500 | | | | | | JEC 00.2 | 3/34/2015 | 1 | 1 | - Fill | 100 | | Sec. Was | A/CD (SHIP) | L | | 1.0 | | | MOWER | 8/11/2015 | 1297 | | - 300 | | | 100000 | | | - | | | | | #245/2019 | the | - | 10 | 100 | | 16.30 h | E/J1/301E | -Dy | - | 3.0 | - 10 | | WE'W.B | A12872013-4 | -00 | | -78% | Hi . | | 2.63 | 155 | | | = | | | - | | | - | | | | | 1020 | - Liter | | | | | 10 - W W | - A 353HL | On | 1.1 | 1100 | -60 | | 10.71 | - 3/M/2018 | Tiley | | | - 10 | | 1000 | 1/33/2119 | Day | - | 38 | -10 | | 660619 | 1/1/2015 | Urr | | 40. | 10 | | MOW III | W/2/2018 | Dist. | | 1.0 | 10 | | NUMBER | 1.13/9.26(1) | Tion | | 100 | - 179 | | WEST | | -Street | | | | | MCE IZ | 9/5/2019 | Dyj | | 10- | 10 | | NC3011 | 8/6/2019 | Mg. | | 10- | 110 | | SE 2012 | 6/7/\$67 | The . | - 1 | 10 | -40 | | 100年1月 | 0.00011 | Dry. | | 10 | 1.0 | | Market 1 | 1/9/2015 | | | - 400 | | | 94CH LZ | Elimino)a | 700 | | 10 | | | 5856711 | 1.6/1/2mgr | 400 | | -300 | | | SACRETE | TE/TE-MILE | Tip. | | T | | | 10.00 | 1.77 | 1000 | 3.7 | | | | - NOR-U | 3-03 (2.27%) | Lin- | | | | | 06.9-11 | 4,53,200 | Com- | | 10. | - 41 | | 1838-0 | 071073019 | | 2 | | 79 | | Mr. W. L. | No. of the last | | | | | | MEDICAL CO. | 0.718/2019 ¥ | Dec | | 14- | 7.11 | | United to | 671,87280-6 | Disc | | 10 | -10 | | 107.5 | 1/27/2015 | Size. | | - 1 | 70 | | MCSP-(2) | 6/31/2003 | 000 | 77. | -10- | 0.0 | | MUNE III | A/33/901/E | Dec | | 1/1 | 107 | | 100.00 | 2.41(204) | D= | | H)- | 100 | | 11.00 | 1,11,100 | | | | | | All the pro- | - 04:01:04 | | | | - 35 | | 240/9015 | - Hr-970 | | | 10.00 | | | 50 10 11 | A/T 211 | Muc | | Jan. | | | | THE RESERVE TO SEC. | Distr. | | | | | SECTION AND ADDRESS. | | 9/MICMO ! | Dec | | 40 | 10 | |----------------------|---------|----------------------------------|------|------|----------|-------| | P. N. L. | | Lity and | Just | | 10 | | | | | | | | | | | - W | 1.000 | TAPL/WOLL. | | | 835 | | | Section . | 7.02296 | | | 110 | 100 | | | | 1100 | 10, 300 | | 197 | 100 | 100 | | 45 | TUE | 2000 | | 100 | 107 | 7/1 | | SERVICE STREET | 77333 | . unsymile | | | 250 | (file | | SEPT. (HE | 3313 | - 9.05/2019 | | | 210 | 1196 | | AF 10 0 | 71115 | 4.71, 2007 | | - | 750 | //M | | ALCW: 144 | 1118 | 0.70720015 | | 16.7 | 200 | - 24 | | BKIZOL IALL | 1315 | 1.79/2014 | | 14. | 20 | 180 | | MORTH | CHOS | - W/ Com/ All Co. | | 1.5 | -916 | | | INCOME INC. | 1.1(00) | B/11/2508.* | | 17. | 1.3/9/0. | 5.01 | | MIDWAY | 1.000 | THE PROPERTY. | | - 1 | 3/460 | 20 | | - T 175 | 31297 | 1000 | | | 2.80 | - 40 | | 4 | 1120 | 20 at 10 (25 to). | | - | 5400 | | | F 10 | L'ATROC | 10.133.000 | | | 2000 | 365 | | HITTER STOTE | 1700 | 2016 this | | | 25100 | 76 | | of Chicago | 1100 | BUTT/GOLD | | | 2300 | 137 | | of the sale | /1100. | 62784c5845+ | | | Cicion | 100 | | AND TWO THE . | 1.1390 | WINDS. | | | 16,000 | 340 | | W0.W/ | 1100 | m 277 881 L | | | 14.00 | 100 | | - | Ama | (pertent | | | D.Pe | - 34 | | m 166 (166 - 1 | 1200 | ALC: N | | | 11.00 | 10 | | pp MJ/FF | 51000 | 4007,100% | | | 16,000 | 1215 | | HE BESTELL | Time | Bithrens. | | 557 | 34,000 | 1,211 | | MEWINE - | -E00 | 0/23/2011# | | | 130 | 1294 | | OF MIND | 100 | 6/26/5/8016 | | | 730 | 1.63 | | MEW/14E | 900 | 43/25/2016 | | | 1.16 | 13/2 | | 96/W 14E | 300 | A126/2018 | | - | 1.50 | 1,53 | | SICW HIE | 900 | 8/26/2014 | | ь | | 1170 | | MCW/MIT | 703 | American services | | | 150 | -185 | | MODELLAND | To. | 8/15 cm/5 | | | -1 | 711 | | | | | | | | | | | -1970 | 0 1 (2011) | | | 706 | - 44 | | | 12447 | 70/1 | | | 300 | - 5 | | OUTWO GET | -20(1) | Amygers | | | 700 | - 60 | | MCW Chi | 1004 | 1076 C3045 • | | | - 64 | G | | Mr. B. | 1000 |
articles. | | | - 10 | | | of Solving | 1000 | 9A4C2019 | | | | 1/0 | | UK BOTTO | 1000 | 300000 | | | 14 | Life | | of the Law | 50(11) | 1895 | | | -0. | | | 38 150 | Torit | 101(23)3 | | 7 | - | 1.4 | | - 10 | 1000 | 1/10/2001 | | | -300 | - 10 | | | 1000 | THE P. LEWIS CO., LANSING, MICH. | | | - 1.409 | -140 | | | 1000 | | | | | 167 | | to mile | Line : | A/A L CERTO | | | 1,00 | 191 | | | | | | - | 5-4(0) | | | NORTH THE | 1003 | (F/(F/(如))) | | * | 5-401 | 208 | | UCUFY % | 1006 | HP15.22019- | | - | 5-800 | 21/ | | Mendania. | 1000 | _n/nzymia_ | | - | 1.400 | 40 | |--------------|-------------------------|--|-------|-----|--------------|--------| | | EXE | 5/18/2010 e | | | | 100 | | # E75- | - 10 | A17173004 | | | 1.000 | | | | 0.00 | 4 | | | Limit | 100 | | of the year | 100 | 1.7 | | | 0.000 | 2011 | | | -100a | ALEXANDE | | | 3.000 | 1.4 | | Marie In | 1000 | MENZMA | | | 1988 | 67 | | MCSC: | 1008 | E-morbins. | | | 5,000 | 160 | | MCW 15 | Eld | 470700154 | | | 4000 | 1,073 | | MCW-45c | 100 | W. B. / 2013 | | | | | | 901 (Sq1, 3) | 100 | - 0 | | | | 102 | | Alt Sala | -400 | 1.0 | | | | | | DEW.16 | int | 147m/2004 | | | | - ioni | | My Mr. I in | 130 | Charles about the property of | - | - | | mat | | | The same of the same of | ###################################### | - | | - 10 | | | Message | 320 | #2H-2011 | - | -71 | | - Pi | | A | | 10000 | - | | | | | NEW Y | 100 | 3/1/2015 | July | 100 | 10: | 101 | | (MEMCI) | | W/3/28101 | Dir. | - | M | 10 | | SNCW-11 | | 9/3/2015 | 104 | 11 | 10 | 10 | | 3000 | | Elefannia. | 25 | | - 0 | 1,000 | | 27010 | | O M CHIDA | PHE | | | - 15 | | Linchell ! | | W (C20) | | | | 716 | | 1000 | | 2-1705 | _ | | - | 110 | | All Sections | | 1,707(0)14 | 289 | | (19) | - 19 | | 4879-91 | | 9701203 | 9.147 | 3.1 | - W | -34 | | Marwett | | DOMESTIC | 1.379 | -1 | | .10 | | MOWNE | | \$21 UCBUS + | Dis | | 300 | 10 | | 46,78117 | | W/1/22018 | Day: | | 10 | .10 | | WIDSH (A. | | -WC11/2018 | 33/6 | 7.4 | 16- | 1.0 | | 100.10 | | 107 (A ESSEE) | 13.47 | | - 14 | 111 | | - | | | | | | | | 14730117 | | No. of the last | 100 | | - 11 | - 10 | | 4.5-11 | | 10 miles | 12366 | | The state of | 5,000 | | APPROVED. | | 8.10X(10/10.0) | Dy | | 100 | 3.10 | | 00000000 | | E/19/2011 | 100 | 74. | - 10: | - 19 | | AUDIO-TT | | EUR DATE | Day | 21 | 10. | :10 | | Acres 11 | | B/21/2007 | The | = 1 | 10 | 1.0 | | WILL TO 18 1 | | U=07200 | | | | 100 | | All months | | 17. Argur | 177 | | | | | The second | | 1.91250 | 175 | | | 75 | | - | | 11000 | | | | | | - | | | 1 | - | - 0 | | | | | - ESTATOR | | | | | | JEEP! | | #153me | 34 | - | -4- | - 100 | | M/V | | AUGUZULE | 12/2 | | 1111- | 10 | | HC#-77 | | 4/29/2011 | LTE. | | - 111 | 110 | | Market . | | MW2203 | 20 | | UI | 10 | | MEWAT | | AZ\$YZME. | 140 | | - 0 | 10 | | | | | | | | | | Ment | | A 31 188 | | | | | | 10 10 10 | | - A421001 - | | | | 10- | | ACT 10-10 | | 40.50mm | THE : | | - 49- | | |------------------|-----|----------------|---------|--------|-------|-------| | and the same | | ar=(an))* | 1 Day | | 10 | - 6 | | Mark Mark Street | | 3.765,000 | Dir | -/- | 10 | 1,00 | | MCW-018 | | 17/6/2011 | Ship | | 10 | - 10 | | ALCOHOL | | 0.27/285E- | Disc | 40 | 7.0 | 10. | | 30CW-12 | | - 4/A/2011 | Dr. | 341 | THE . | 10 | | MCMODE: | - | 87972828 | 8.59 | | - 101 | - 111 | | 60 克二十二 | | H-16244 | On | | 707 | 1/0- | | HOE IN | | 2001 14 | 100 | | (0) | | | | | | | | | - | | Trans. | | # 100 mm | | | 0 | 1.0 | | MONTH | | F-A/1.4/2004 | Dec | | 100 | 10 | | MESV-10 | -0. | 1/15/2015 | Em | TIL BU | 10 | 10 | | NICROSE. | | 1/14/2015 | Pa | | jų. | 10 | | 20.70 N | - | 5/12/2000s | Cin | | -101 | 30, | | MCW.FE | | Willems4 | Con- | 30 | jii | 16. | | 307W-16 | | 1/15/2ms | Um. | | 30 | 10. | | ARCTIONS. | | N/Self-Initial | 1.0 | | - ili | 10 | | 221 | | 2020100 | 125 | | - 0 | 30 | | BATCAMOUNT I | | 62223000 | 10% | | - 10 | | | Mark 1 | | ACTIVITIES. | Day | 19. | 19. | 10 | | MCC/W/ FIR | | #12M/201# | Day | 4.1 | -11 | 1.0 | | H15/25/10 | | 3/25/2013 v | Dig | | Vi | 10. | | 45.20-14 | | ECHANY- | Dip | | 1.6 | | | MUNCH | | 107 T 100 H | Tin | | 10. | 10 | | EB/W | | ACYBIA. | 339 | | 1.0 | 101 | | F13, | | AG ET | -5 | | 00 | _ 101 | | #4(/Se = 1 | | 0.00 | - Deli- | | 10 | 417 | 76..... Very larger with the product of the control +Chie-H-molesu podition to the design of production of the second specific and the second PUBLIC WORKS AGENCY JEFF PRATT Agency Director August 24, 2015 Wittemhed Protection District Tully N. Gifflord, Director Transportation Department David L. Fleisch, Gractor Engineering Services Department Herbert L. Schwind, Director Water & Sanitation Department David J. Sasak, Director Central Services Cepartment Januar E. Turner, Director Kangahi Wang, Fh D. California Regional Water Quality Council Board Los Angeles Region Smedards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagran Bacteria TMDL (TMI)L) Compliance Monitoring Piau (CMP) for the month of July 2015. Sites were sampled weekly on Tansdays (July 7, 14, 21 and 28). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry," Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with*). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for situs with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal coliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014, in alignment with the Regional Board's removal of the fecal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Ewelina Mutkowska at (805) 645-1382. C. California Deputy Divoctor, Watershed Protection District CU: Tully Clifford, Watershed Protection District Ewelina Markowska, County of Ventura Paul Jorgensen, City of Thousand Oaks Joe Bellomo, Wildan Associates Allen Ma, County of Los Angeles (vin email) Table I. Weekly sampling results | | | | | | Single Sampled; | |----------------|--|---------------|------|-----------|-----------------| | Location | Time | Dwin | Main | | E all | | | | | | | (235 MPN) | | 3541 30 day. | | 7.77/2019 + | | | On | | W. W. S. | | 15 (72)(16) | | | . Og | | 40.70 | | 7771/10054 | | | Dry | | VII 270 | | 7/28/2015 | - | \forall | Do | | 246/3000 | | 3/7/2019 + | | Н | Lbu | | WCSE.S | | 7/14/20154 | | | 151 | | MOWIT | | 1/21/20/14 | | | - Arr | | McWall | | V20/m464 | | | Ear | | MCM II | | Wohansie | | | Dec | | 100 | | 175314 | | | Dies | | +3-5 | 3.845 | V/23/30194 | Rim | - | 110 | | - 1 | | THE DISTA | | | Dig | | | 711 | - LANCES | | | | | March 1991 | 115 | Schmitte | - | - | | | W. | 1013 | Sylvy/Bress. | - | | 201
Zm | | MUNICIPAL | 1100 | 7/TURES+ | Hale | | | | Walls | 1100 | TOTAL STOCKS+ | | | TROOK. | | 3875073 h | 1300 | 7/1/1004 | | | 30 | | MIDDWA5366 | . 945 | T/ 15/2005 h | | = | -70 | | MEWAS | 11:00 | 7721/2015+ | Em | | 3.60 | | MTW/35 | 1/100 | 1/70/00014 | | | 100 | | | | 1/2/20014 | | Н | Die | | | | 7714730514 | | | -Clay- | | MICWELT. | | Ty21/2015+ | | | Illey, | | MCW.L* | | -7/TM/AU-1 • | - | | Dig | | A colonial and | | 7.11.000 | | | | | ARCHO E | - | 7/2/2015 4 | - | 1 | ; bu | | No. of Land | + | 2) LL/W(++ | + | - | - Day | | M(20) 10 | - | 3535
(2013.4 | + | ++ | - FM | | unig he | | -2/107.4 | | H | 1.00 | | | The second secon | | | | | $[\]begin{array}{lll} & \text{The } [1000 \gtrsim 20 \text{ grains}] & \text{produced in } \\ & \text{str}[1000 \lesssim 20 \text{ grains}] & \text{str}[1000 \lesssim 200 \text{ grains}] & \text{str}[1000 \lesssim 200 \text{ grains}] \end{array}$ AT any of samples Table 2. Computation of daily geomean | | | | | 1140 | ingle Sample
Spected for rank
ley and NDs) | Geomeni | | |----------------|------|--------------|--------|-------|--|-----------|--| | Location | Time | Date | Hair | 100 | E. coli | L'est | | | | | | 1 | | (235 MPN) | (126 MPN) | | | . 在宝台- | | 1,22 | 1 200 | | | 70 | | | ALTWO | | 3/15311 | J.Hr. | | 100 | 794 | | | HE OLON | | 7/4/2819 | Livi | | | 700 | | | MOW M. | | 284/26/6 | Thy | | - 14 | 76 | | | M/CWHS6 | | 7/3/2007 | Tary | H | The second | 10. | | | : MUNICIPALITY | | 7/6/2019 | 12m | | FU: | 10 | | | BIT WISS | | 77777056 | Toy | Ti | n | -10- | | | MUNIC | | 7/11/2/09 | CHI | 17 | 10- | 10 | | | 34030/35 | | 377/4018 | 1700 | | NU I | - 10 | | | MOW HE | | 7/10/dox4 | 1797 | | | 40 | | | MCW. | | 2/13/2008 | 17e | | | 10 | | | 107 | | 7.11 | 1000 | | | 15 | | | MUNO. | | THE WITE | -17m | | | (8) | | | AM 196-100 | | 1721W2004 | Line | | 100 | -100 | | | 1675.00 | | - T/Alexand | 374 | | | 76 | | | NAC WAR | 1 | 7/30/2013 | Time : | | 7(0) | -10: | | | 50.7W-00 | | 7717/10/19 | Day | | 000 | 10 | | | 84C7VP-1941 | | 7./4452019 | 139 | 16 | in | (0) | | | MCW-00 | | 77 (U (20)) | Shu. | | 10) | -(0 | | | ACTOR. | | 770 | . Brg. | | | | | | MCW-III. | | 15/02/2015 + | Litte | | - 1/4 | 114 | | | MCWAS | | Trans/2015 | 236 | | 718 | - 40 | | | MCW III | | 1725/1005 | - Day | | the system | 100. | | | 34,50 ft. | | 7/29/2015 | E09 | W | 30; | 10 | | | MCW-III | | 7/25-2005 | DOM: | | 70- | 10 | | | MEWAS | | 7/06/2019 | Day | Let's | 10 | | | | MCWIE | | 7727/2015 | 1397 | | 10. | (0) | | | Military to | | 7228/20169 | Egy | | 70 3 | 100 | | | 21/2/6-85 | | 1.09/12016 | Pin | | let let | TF | | | 16.70 | | Cha.0000 | 126 | | ()) | 10. | | | 74.0 | | 231-919- | 100 | | 480 | 110- | | | | | | | | | | | | active to | | 0.14.000 | 100 | | 100 | 100 | | | 100000 | | 2/2/2016 | Day 3 | | 30 | 10 | | | 94.000.0 | | 2/1/3019 | The : | | 10 | 1,0 | | | -MITTON 9 | | 1/4/205 | Dep | | 0.0 | 10- | | | J# 204 1 | | 774/2005 | Tho | | 10 | 16 | | | | | T/6/2015 | | | | 100 | | | | | | 277 | | 10 | | | | E-501 | | 1/17/2015 e | JAN. | | 100 | | | | | | (201) | The I | | 68 | | | | 5.77 | | 2003000 | Dip | | -10- | 100 | | | 36291 | | 7/19/2009 | Dry | - | 10. | 70 | | | MESWIFF | | 77(1)/2003 | Lay | | 110 | -40 | | | | | 713/85 | Day | | FIL | | |------------|----------|--|--------|----------|--|------------| | 0.0 | | (12/(loss))). | The . | | | | | WTO T | | 14/200314 | 1114 | | | 10 | | Biggiero I | | -7/43/2000 | Dw. | | -103- | 700 | | Mark | | 717-23 | | 15 | - 0 | 14 | | 34:100 | | - PERSONAL PROPERTY. | 13. | | III | in. | | THE R. P. | | Street, | 100 | 1 1 | LU | -11 | | ALC: | | 1.75/94/2016 - | Line | | 701 | 10 | | MITTER T | | 1378040m/th | Libe | | 100 | 10 | | Market 1 | | 7529/20154 | Div | | 101 | 10 | | 825 TW/ 8 | | 12/22/grad | Die | | 16 | 10 | | MOTOR | | Tourne | | | 10 | -10 | | 36397.9 | | | | - | - Ca | | | | 1 | 7725/2018 | Det | Н | | (1) | | 7. 94.1 | | | - | | | 10 | | 2.71 | - | 1/8/201 | 0 | Н | | - ru | | -FEF | | 0.) | 19 | | | | | 77.5 | - | 321114 | Tan. | | 109 | 10 | | 4.5 | - | 7/25/201 | 11/4 | - | 11.7 | 10 | | -BCDV-9 | | Traurjuns - | 9m | 13 | | 10 | | 36.867 | | 7/11/2013 | Orc | - | -18 | .120 | | | | | | \vdash | | 177 | | MICW 12 | | 721/3001 | Line | | | 12 | | MCOF III | - | 1750076 | Tier. | | 111 | - 2 | | MODELLE | - | 3/2/201 | | | | | | 24.事(生 | - | 2-4(20)3 | 1.15 | - | -100 | 10 | | Mark 18 | - | */ h/202 | 3 | - | | 10 | | | - | | | - | (H) | 101 | | MCTOF 1.2: | - | 7/7/20134 | Det. | | 14 | | | MOWAT. | | 7/8/2018 | | \vdash | 104 | 10 | | ME SHALL | | - 371972018 | Lin | | | 101 | | AATTE DE | | 10.00 y 10.00 y | first. | \vdash | - 11 | 778 | | - | | Attende | Ser | | - 11 | 1 0 | | | | The state of s | Like | | -10 | 111 | | 930 | | | i Dry | | 107 | 0.0 | | HCF-S | - | 17/2019 | 7 FAS. | | 10 | 20 | | Mr and | | JUIN TRIS | 3 | | 111 | 10 | | MOVE: | | 27/12/2001 | Dire- | | | 10. | | 000°00/11 | | 10/1 to 2005 | De | | -10 | 10 | | MCWILL . | | SHEETH | - The | | The Co | 111 | | MCW III | | - P2200/2001 | The | | | 10 | | | 106 | Estimates # | | | | | | HE T | Series ! | | 5.7 | | | | | | | THE STATE OF | Sign 1 | | | 114 | | E 7 L | The . | 7,94/3011 | See. | | 140 | - Halliman | | 100 NW 12 | 1946 | F/31/2011 | Bin | | 7194-71 | ** "Hamp?" | | 20/07/02 | Zins. | 9776/2016 | Bine | | The State of S | This are | | M3-1 | 11311 | TOTAL DE | | | THE PERSON NAMED IN | | | 10.10 | | Tenson ser. | Tier I | | 10 | - 10- | | MEW-IZ | | F/30/2001 | 170 | 1 1 | 770 | | |----------------|-----------
---|---------|------|-----------|----------| | 28.120.13 | | 2/31/7013 | Girt. | 161 | | THE | | | | | | | | | | Milita ta | 11.50 | 7. (420) | | | | 76 | | 400 | 1131 | 713.70 | | | 70 | 117 | | HICKSON. | 0.0185 | 2.54.4.500.60 | | | (0) | 100 | | 30,307.0 | 3130 | 24(20) | | 94 | 570 | 130 | | DOM: HIS | 1.1.30 | COMMITTEE OF THE PERSON NAMED IN COLUMN TWO | | | ATT | 1.00 | | Comment of | 7130 | 773 7079 | | 1.7 | Con- | 115 | | MORANI | 215 | 7/7/20159 | | 141 | 500 | 146 | | hit ar jus- | -215 | T/A/2015 | | 115/ | Mat | 1,00 | | ARTE-RAY | 318 | 7/7/7003 | | | 100 | | | MAYER THE | 213 | =(4 (ettit) + _ | | 14 | - 100 | -15 | | MCDELG- | 215 | 3711,7001 | | | TALL | 18. | | HENETO | 211 | 734113904 | | | 911 | 170 | | 100,500 May | 215 | Acres equal- | | W. | 300 | 110 | | 00.00-140 | 1015 | 771-72015# | | 7 | | 100 | | MCW.JH. | 1015 | 2/15/2001 | | De l | - 20 | 100 | | MOTW-716 | 1015 | 77 L6/2h1 h | | = | .20 | 100 | | 国广联者位 | 1015 | 7/37/30IDE | | -3 | | 100 | | MCOCKETON - | 4015 | 7/16/2015 | | 100 | 30 | 19 | | No. | 3005 | 1.00/3.40% | 1 | | | | | military (III) | Lars | 5 7 20 1 | | | - 20 | 705 | | 64.3F (C) | 3.000 | 22/0004 | H= | | | | | 200 | 1100 | 1.50 (| Total . | | 100 | 100 | | from the co | 1100 | | 5- | | - Pflant! | -refuger | | MCW, NA | 4.100 | 3/42A72013 | N= | | 166500 | 110,000 | | William Fig. | 2,140 | 7,725 / 2011 | Wpm | | 146 | | | MOSE LAN | 1100 | 7/26/2019 | Built | | - 11-2 | 2500 | | MCTRO D | 1.000 | 7/23/2015 | Aug | | *EBJUUTE | 3.7520 | | 16 7W 142 | 7100 | 77/38/2013 • | | 100 | 100 | - 12 | | 08/CE 146 | 1100 | 7.6862019 | | | WC01 | | | Water | 7100 | T.086/2007 | | | side. | | | 40年第三年 | 1100 | 1 2011 | | | 100 | - 6Ga | | | 20020 | 100 - 111 | | 1 | - 10 | 200 | | AZCINE SER | 1030 | 171/2015
201/2015 | | 4.1 | 2019 | 274 | | 20020-15s | 1030 | 7/2/2015 | | - | (10 | 765 | | MCW-15: | 1030 | 17372015
27372015 | | - | 1.10 | 256 | | DAY OF THE | 1650 | TANKS OF THE STREET | | 1 | 376 | In | | photo re- | 1100 | 2/2/2019 | - | | 110 | - | | Of the second | | | | - | 1.00 | | | 100 | 1107 | THE PERSON | | | | | | | 1100 | AMAZAMICE
SALESTAVICE | | - | | 994 | | No. of Co. | - 100 ACC | | | - | | | | | 1100 | 77047004 | | 3-1 | | 1700 | | AND THE THE | T1644 | 7211/2015 | | | - 6 | LBD | | MER-Visi | 4100 | 7/Td/Chirls | | | - | 748 | | ALLW-IEE | 1100 | 2/10/2005 | | - | 100 | 183 | | MONTH | 945 | 7/14/2005+ | | | - 31 | 7.10 | | MUNUTE | 3945 | 2/15/2018 | | | | 20 | | all be tre- | 345 | J.Fragin E. | | 1-1 | | - | |----------------|-------|----------------|------------|-----|-----------|--------| | Material - | .043 | CHARLE | | | 11 | 101 | | STREET | 792 | 1000 | | | - | - | | W/W/W | 1055 | 5/2/03/03 | | | | | | 10.7 | 1100 | 1/23/20 va. | Batter | | 1.00 | 70. | | Mark Lan | 1100 | 71175/2018 | Black | | | A.A | | MICWI 15c | F020 | 77/20/70079 | Ram | | 10 (page) | 755 | | ARC WOULDS | 10.00 | Usan/Worth | Ohio: | | 1111 | HALL . | | 10 mg 1/m | mm | T078,77618 | Rino. | | + | +10.1 | | T. 3.19 | 10000 | TOATE | (Care | | | | | -16-W 7m | 1.0 | | Diam'r. | | | | | Mark to | 1000 | 14 | | - | | | | | UUDE | Mary 1 | | | E.in | - 0 | | Address of the | 13/00 | The same | | | - 78 | 10.1 | | H5/96175c | 1000- | Suthania. | | 100 | #81 | | | | | | | | | | | MCKUT | | 37/1/25/11 | Die | | - 10 | 16 | | SE 2017 | | 7/1/2016 | D- | - | 780 | 10 | | SWIFT | | 3/1/2016 | 17m | | 1,000 | 14 | | - 17 (7) | | 7.96(m) 1 | S.Dee | | Air- | 10: | | 20.76 | | - 1/ C mark | | | 181 | | | Link to | | | Tall. | - 1 | | | | MOREST | | LFT 10/15 # 11 | Chi. | | THE | 10. | | Market 14 | | 2/8/2015 | 170 | | 118 | 10 | | Acres 11 | | 7/4/2011 | De l | | - 1 | 10 | | MINISTRA | | Transma. | 10% | | 100 | 10 | | Aprile Adv. | | 27/17/2015 | 0m | | 1.0 | - Dj- | | 1878-11 | | 1113/2016 | 0. | | -10 | 100 | | 10.00.11 | | CDHABINE | The last | | | i)j= | | -1.0° (b) (b) | | 374mm14 | | | | | | Line Section | | 1462001 | | | 13 | 131 | | NE II | 17 | 2/10/200 | 34 | | - De | 20- | | de 10- | | -001125m - | 201 | | 113 | .10 | | MCB-C | | 3/(18/2008 | CH+ | | - 40 | 19 | | N0.30 TT | | 271972010 | Dir | | 10- | 10- | | 100% 57 | | 7/20/2016 | Dir | | 10 | | | MODELL | | 1/21/2015+ | Dep | | 10 | LU | | MCPHI | | 2 275 | 150 | | | THE | | JAN 18. | | Ament | pleg. | | | 111 | | 5010010 | | 12 | Lin | | 1.5 | 1.0 | | THE RESERVE | | 155 | 116 | | | | | MOTO | | 2/2002 | 194 | | 1.6 | 70 | | A FILE | | 77724-75 | The second | | - 10 | - 0 | | 75.0 | | 1/2/19/19 | Dr. | | 511 | | | -Vanile | | cf (29/2011) | Un | | 107 | - 20 | | William | | - Jan 2014 | Dir. | - | | - 10 - | | - | | 10/200 | 777 | | | 25 | | | | | | | | - 11 | | | | - Indiana | | | N. C. | | | Mary L | | FIGER | FR. | | | | | 4.00 | 71.70 | 1.00 | | | | |--------------|--------------|----------------|------|-------|--------| | | 73(20) | 170 | | 700 | - 0 | | (0.10) 16 | D31904 | dia. | | -101 | 3.0 | | \$40.00/ pg | 17673078 | 12/2 | 10 | .10 | 100 | | AUDN 16 | 2/1/2015 | Uh | | 40 | 10 | | JMIJW/10 | 7/4/2005 | 1477 | | 19. | 10. | | ME200-16 | 1/9/2001 | Lin | | 10 | 101 | | BH1092-18 | 2/49/pmg | Div | 20 | 301 | 18 | | H45700.18 | TITYZOUL | Jim. | 8 | 1.0 | - 101 | | NO. W. CL | PURNING | .011 | | | - | | MERW/19 | 2,000,2009 | 120 | | - 0 | -10 | | 340,16 | 7249/2005 | Inc | | 10.0 | 114 | | MCW 16 | 77/15/2015 | $\pm 2\pi c$ | | 10 | 100 | | 10700114 | 3/14/3015 | -iv | | N. | 70 | | MCW HI | 1/17/301E | Tary. | | 10. | 10 | | MCDR/DE | 1706/2015 | . Italy: | | 16.77 | 40. | | 90.年日 | 31 PESSES | Dec | | 10 | -01 | | 84C08514 | 177,731,3919 | 1m | | Aff | 100 | | SMOWN RE- | 2/07/2009 | Div | | - 1 | 100 | | PHILTON FR - | 12023011 | Div | | 4.0 | 10 | | 80 CE104 | 7/2//0011 | Emp | | III. | TN- | | AUDW/14 | P/54/2014 | DA | | 3.0 | 10.0 | | MOTIVATI ALE | 1/25/2015 | 281 | 0.1 | 10. | 10 | | MCM 18 | 7/28/2001 | Thu | 13/1 | 10 | - 22 | | MECALIFIC | 7/10/2005 | Lity | | 10 | - 16 | | MCW III | 7720735154 | 0.000 | | 10 | 1,0 | | MCW III | 7/29/2011 | \Dy | 16.1 | 10 | - (11) | | MCW-19 | 1/10/2019 | - Dey
- Dey | | 10 | 10 | Warm will per wall or support fracted on the Patients offer a day with the and the fit parameter consists that simply about the fitting X_{ij} and X_{ij} and X_{ij} and X_{ij} and X_{ij} and X_{ij} are X_{ij} and X_{ij} and X_{ij} are The property of the second sec After of congress PUBLIC WORKS AGENCY JEFF PRATT Agency Director Www.shipg Protection Clistrics Tulky K. Clifford, Director Transportation Department David L. Plaisch, Director > Engineering Services Department Herbert L. Schwind, Director Water & Sentation Department David J. Sesuk, Director Cantral Barricos Department Janica E. Turner, Director July 27, 2015 Kangshi Wang, Ph.D. California Regional Water Quality Control Board Los Angeles Region Standards & TMDL Unit 320 West 4th Street, Suite 200 Los Angeles, CA 90013 (213) 576-6780 Subject: MALIBU CREEK AND LAGOON BACTERIA TMDL COMPLIANCE MONITORING FOR VENTURA COUNTY AND CITY OF THOUSAND OAKS Dear Dr. Wang: The table below summarizes the results of the weekly monitoring effort required by the Malibu Creek and Lagoon Bacteria TMDL (TMDL) Compliance Monitoring Plan (CMP) for the month of June 2015. Sites were sampled weekly on Tuesdays (June 2, 9, 16, 23 and 30). Sites without results reported were not sampled due to insufficient flow and are labeled "Dry." Daily geomeans were calculated using results from the previous 30 days (actual sampling date marked with +). Weeks with wet weather samples (collected less than 72 hours after a day with > 0.1" rain) use the previous non-rain single sample value to calculate the geomean. Half the detection limit was used for the purpose of calculating the daily geomean for sites with results reported as < 20 MPN/100ml or for dry weather when no sample was taken. Fecal colliform monitoring has been discontinued, as approved by the Los Angeles Regional Water Quality Control Board on October 31, 2014,
in alignment with the Regional Board's removal of the focal coliform objective for REC-1 freshwaters from the TMDL on June 7, 2012 and subsequent approval by the U.S. Environmental Protection Agency on July 2, 2014. If you have any questions regarding this matter, please contact Eweling Multiowska at (805) 645-1782. Deputy Director, Watershed Protection District CC: Tally Clifford, Watershed Protection District Ewelina Mutkowska, County of Ventura JoAnne Kelly, City of Thousand Oaks Joe Bellomo, Wildan Associates-Allen Ma, County of Los Angeles (via email) Table 1. Weekly sampling results | | | | | | First Restamples | |---------------------|-------|---------------|--------|------|------------------| | (Karrobbren) | Link | 17:00 | T Bang | | 12700 | | | | | | | (ULS MEN) | | DARWING | | N/2/2015 · | | | Oby | | adC29(0) | | H/9/20154 | | | Tory | | MEMORIA | 1 | 07/16/10/54 | | | 1703 | | MCW W | | %/23/2015 · | | | blig | | MINE DE | | 6/10/2015+ | | | - Dry | | 10.00 | | E-Street Co. | | | - Dies | | hat Ar is | | 6/10/2016 | | | Lim | | NOWN | | 6/TE-2015+ | | | Det | | ALCOH II | | 67±3_207±+ | | | :biet | | | | 6/10/2003.4 | | | | | Note in | - | C100004 | | | EDT | | - EH | 1 | 10 mg at 11 a | | | Div | | - Table 100 - 12 | | 1177 | | | Der | | SEN | | HARLING XX | | | Per | | Att.700-12 | | is/ord/2hit/e | | | Day | | MCW tale | 1206 | 6/2/2015+ | 1 | | TAO. | | METER-Tale | 1275 | 6/9/3815.0 | 1 | | 330 | | MC19/14b | 1300 | 6/14/2015+ | - | -1 | 20 | | MESSALSE | 1115 | 9/21/2015 # | | | 130 | | LO W UND | T) to | 4,775,7375,4 | | | Tis. | | | 77.40 | To Containing | | | 1/30 | | MCMmy III | 3340 | 9/2/2019 0 | - | 24 | | | Marketon | TEM | n/w/print + | | - | (25/6) | | MCSC CH | 4015 | 6/16/2015 | + | 8 | 110 | | MCWES | 1015 | 6321/2015+ | 1 | = | 170 | | autra/the | 1036 | 0/20/2011 | 1 | = | 110 | | MORES | | A/2/2014 | | | 15 | | 44-75 | | 47054 | | | - Co- | | DOM: | 1 1 | 17 Ly 2017 A | 1 | | | | STATE OF THE PARTY. | | - Apr | | | - 170 | | JAE N | | - Speciality | | | Fig. | | Himite | | 9/2/2019.9 | | | Dig | | MOWIN | | 5/9/20154 | | | Day | | MORTE | | 6-74/27159 | 15-21 | | 1 km | | 500,980-8.00 | | 4/21/5/14 | | 7549 | 1.154 | | May Miles II | | #/10/2019 # | | | Lin | Acoust (The Alderson Section 2015 and 10 to - 15 m Ven - 110; 2 1 AChieve Western Table 2. Computation of daily geomean | | | | | registers and control of the | - Tagenmen | | |--------------|--------|-------------------------|-----------|--|------------|--| | Location | Time | Date | 4Labe | E. add | Brece | | | | | | | (ESS MINN) | LIZE MOTOR | | | Act to | | 4-15-000 J | | | 3.6 | | | 13D 97 He | | - State 1.64 | | | 464 | | | 10.9 | | - VOID | Titul. | | 10. | | | 431/d/ == | | 474/2015 | FOU | 10 | - 400 | | | 20/4/ | | -171/2016 | Die. | 49 = 1 | 10 | | | M/78 | | 670 (bits | 1.00 | 20 | 3,0 | | | 6317/kg == | | 6/7/2019 | Eleji. | W | - 00 | | | apripa | | - 4-ACEPIA | L. Time 1 | 10 | 600 | | | DEWIN. | | Avityconive) | DP-L | (9 | 30 | | | NUMBER OF | | in Atmist | | 10 | 3. | | | NEW YORK | | Last Your Control | I Day | 100 | | | | 102 W /Fe | | with/arth | 11/69 | 100 | 16 | | | 地震地 | - | 1/13/2013 | Line | 10 | - 40 | | | #6770 (B) | | /B/ (8/2019) | 1708 | in | 10 | | | 110000 Bu | | AZ15/9/013: | 1. (20) | 10 | 30 | | | nichtelber | | - Makeman | Line | 100 | - 10 | | | WWW.By | | 10/12/2005 | (Ory | 30 | - 0 | | | MERCH | | 1971/4/301 | Din | (0) | 110 | | | V. T. A. | | 200 | | - 111 | | | | 2012/07/05 | | 400000 | 7.60 | 10 | | | | NUMBER OF | | action to | | 101 | 10 | | | 2075.80 | | 4-92:201 | -36 | 10 | 10 | | | 447.707.38 | | H223/2005+ | 54 | (0 | - 10 | | | W. W | | B/29/7003 | 100 | - 10 | 10 | | | ME/47 Bit - | - | 6/25/3025 | 1.79 | 10 | 10 | | | MCW/AE | 11 4 1 | 4/2//2018 | 250 | 1 1.0) | 10 | | | 2012/91/P | | W/2015000-1- | r fin- | -e 5% 1 | - 10 | | | ER 7% III. | | 14/28/9013 | 175 | | 16 | | | hrowing. | | 25/30/1 | 130 | - 7 | 10 | | | 1007(-10) | | E/711/2015+ | (Jaj | | | | | NO. ST. | | The second second | 1182 | | 1100 | | | | | AND THE PERSON NAMED IN | 1.194 | 14 | | | | 100 Se/ 10 - | - | ACCURATE | king | | 10. | | | 141 70/4 | | CARLINE V | | A | - 10 | | | MLW. | 1 | 101,410 | al Aug | | -1- | | | - 41 | | 429,03379 | 175 | 100 | 10 | | | 111.36 iii - | | SANGRAD | o Circuit | 1 - De-2 | - 40 - | | | 36787 | | 200 | Try. | | | | | (SCM) | | 4/1/2011 | 790 | - 00 | - 0 | | | SECTION 1 | | authorization : | Rev. | 0 | | | | THE TAN IN | | 10/10/GBD79 | | (0) | 10. | | | Aut of a | | industrial . | · FOR | 10-10-1 | 4.0 | | | 4000 | 6/12/2014 | One | f-E | -100 | .313 | |--------------|---------------|--------|-----|-------|-------| | - 100 P | 32343806 | Aby. | | | | | SCW F | - J. wileyda | | | 19-5- | 111 | | CATCHER TO | L-M/IA/Tirec | 10- | | - 000 | W | | A Marie Area | - AUM/500 L* | De. | - | - | 10 | | LE 100-9- | - and types | 114 | | -00 | 10 | | NC THE R | - 1 a 1 2 2 1 | Der | | - 19 | 10 | | 18,707 | E/(9/25/E) | Out. | | 10 | - In- | | 400 | = auguth- | The | | 10 | TI | | 41.00 | 177) (200 | 134 | | 10 | 10 | | 76.90 | 1.00-00 | | | | | | Jan Start | in/terop | 216 | | | 10 | | 70.00 | 142 | T. | | | 100 | | ALC: NA. | 1 1 - 111 | | | | 101 | | | | Urg. | | (0) | 10 | | | - Allection | Line | | | | | AUGUST | N/77/7035 | 94 | - | _# | 30 | | 56.30.5 | \$2.28 (\$U1) | Tibe. | 134 | 10 | U | | -0.05-96-0 | 6729/1013 | Eur. | - | - 40 | 10 | | -MEW-II | A.(30,000554 | Dig. | | EU | 30 | | GCS CI | A/103000 | Direct | | | | | AN SP-EE | 6/2/4/194 | Mo | | _ | -10- | | 7 8 11 | 4 14/10/6 | | - | | 7/2 | | 44.0 | LAME S | 100 | | | II | | | 1000 | 101 | | | | | MCWIT | 1/0/2011 | 777 | | 40.7 | 100 | | MCNOUT. | 44.500(4 | The | | 10.6 | 17 | | MOUTH ALL | 4/9/1000 | 3100 | | - 0 | 11- | | MERCIN | 0.090790834 | Dec | | -91 | | | 10. 10.15 | - 1 2. rum 94 | Mr | | | - 11 | | MCW LL | - Michiel | Alex S | | - 10 | | | WEET | 1447-911 | Line | | | 12 | | THE RESERVE | Sricen - | | | | | | 19. 8 4 1 | Transaction . | The Co | -01 | 10 | 15- | | Marie I | 10.157201.5 | Dir | | 100 | 10 | | 167.3 (2.7) | 4010 77114 | Org | | (1) | - 13 | | OMORELE | W/17720H | (33m) | + | 100 | 12 | | Micwella | September | 12m | 0.1 | 161 | 11 | | MCD-11 | INVESTIGATE. | Der | | 10. | 101 | | ADM C | (ACM) (| 7.04 | | | 11 | | 270 | | 110-1 | | | | | 1470 | THE PARTY. | Time | | | 10 | | 10 | F201194 | Do | | Ur- | -101 | | THE YAY TO | 200 | 110 | - 1 | 70 | 700 | | (E-8 (E-1 | 9239/2001 - | 2.50 | 4. | - 10 | 10. | | ALCOHOL: | orthopii (| The | | - 15 | 10 | | (株)(20年7年) | - 1200/2016 · | Do- | | 39 | - 111 | | ACRES 4 | 375875509 | Lite. | 100 | | | | 478/11 | | is brefamilie | this | | | | |------------------|----------|----------------------|------|--------|--------|------| | | | | | | | | | BECOM HAVE | 1700 | KU1/2019 | | | 10 | 40 | | 100 M 100 | 1230 | 30/20/20 94 | | | 130 | | | 2012/8/4-05 | 1230 | 474.73053 | | - 7 | 150 | | | NOW YELL | 1230 | 0.473013 | | | (38) | 2 | | au-thi-rate | 1235 | 6.14.200 L | | | 1.92 | II- | | MENV Jahr | 1230 | 0.75/2056 | | | 138- | - 1 | | Burble (Mr. | 1,000 | Lin 1201a | | | -50 | - 11 | | 7.71 | - 10 | | | | - 63h | 35 | | Service. | 1217 | - 1. A. 15 W. | | | 311) | - 5 | | Ser. W. 1360 | 1213 | -573574 | | | 750 | | | M. W. Jah | (221) | arrent | | | 350 | 200 | | - XII | 1235 | HISCH! | - | | 330 | 33 | | 1000 | (223 | ANAMA | | San P | 330 | 10 | | 45 Files | 1213 | W14/2015 | | | 430 | 30 | | DKTWIN | 1215 | | | | 350 | - 41 | | NET WE THE | Ithe/ | 1/15/2015 | | | | - 1 | | | - | 3/3/6/2015 4 | _ | - | -3 | - 11 | | 24 28, 141 | Tto): | 2 / / / / / | | | - 9 | | | 6E5E340 | | 6.533-1000.6 | - | - | | 3,0 | | | 3135 | 100 | | - | | - 6 | | Setting 1995 | 13/00/ | W 30/30 a | | | 20 | - 16 | | SALTAN TAB | 2,750 | 4/31/3079 | | 4 | 30 | UF | | MCW-19b | ±100: | 14/22/2018 | | | 26 | - 11 | | MOW 345 | THE | -6/2X/2015* | | | (32) | 53 | | MORE THE | 1115 | NOA/MINA | | 7.1 | 1.00 | -57. | | ME200-TVI | 1115 | EC34/2008 | |
40.7 | 3.00 | - 12 | | CERTIFICATION OF | 100% | Section 4 | | | 3785 | 100 | | | MYS | | | | _ # | >- | | - | THE . | 367 | | | 100 | - 3_ | | 75 mg/m | 1113 | A THE REAL PROPERTY. | | 12.3 | - 0; | - 3 | | THE WORLD | 1130 | ar/20/2015# | | - | 0.10 | TT | | | - | | | | - 70 | | | All Willer | 1000 | N/1/2005 | | | 101 | 71 | | NOOW EVE | 1749 | m/%/26134 | | 2 | M00 | - 31 | | All The Advanced | 1133 | 974/2019 | | 2 | 993. | | | har and you | 13-43 | +1.25 | | | 300 | | | William Co. | -Year | 144-596 | | | . 44 | - 24 | | MORE Lie | 11/6/1 | Jan 2010 | | -1 | 500 | | | 523 | 3140 | 40,005 | | | 100 | - 71 | | 在李万二 | 7140 | L007200.0 | | Jan. 1 | 900 | 111 | | MC等力。 | It2n | Arthurs 4 | | | 1700 | 13 | | OCTULE. | (120 | 8/16/3011 | | | 1,200 | 78. | | SCELL. | Trasi- | - h/11/20016 | | | | 4 | | BONE bear | 1120 | Jr041895 | | 34 | (319) | - ME | | 4.4.1 | 1136 | 17000 | | 7.1 | t tile | | | R-SILE | 1129 | 4 321 | | | E.800E | | | | (c2). | - arryanin. | | 77 | 130 | - 1 | | Carrier Lt. | 3101.6 - | 1.7 - 100.4 | | | 10 | | | | HURO. | Lancy Million | | 1-1 | .00 | .000 | |------------------------|--------|------------------|----------------------|--------|--------------|-------| | Marie I | 111119 | LICENTY - | | | 12(0) | 7711 | | MINCHS - | 1035 | */1973m5 | | 7.1 | 110 | 110 | | MUW UP | 200,5 | - AC\$0/0015 | | | (0) | 11.1 | | MEW ES | THE | ACM/JIME | | - (1) | 110 | | | WENCED - | 100 | 4 (22/207) | | | 1.10 | 175 | | NOTE IN | 71015 | 1679 kirsalla ac | | - | [70] | 1 | | diam'r. | 1.1015 | n/24/3m.t. | - | | - 178 | 100 | | 38.35.10 | HULS | 1/21/2011 | | 101 | 114 | 100 | | 0.30-11 | 1015 | Transfer Co. | | 7.7 | | | | NAME OF TAXABLE PARTY. | 1015 | W/E//2019 | | | 0.06 | 144 | | MCW-Hir | 1015 | 1/28/2018 | | 4 | 1.10 | 212 | | 45 W. FF | 1015 | 0/27/201 | | 2 | 170 | 211 | | W 2 76 | 2000 | 6/NO3600 · | | | 100 | 733 | | | 10.00 | AND STREET, | | \Box | | | | | | | | | | | | 677 | | | | \pm | - 1 | - 100 | | No. | | SERVE I | -100 | | | | | | | - AAGTON | 175 | | 10. | - 10 | | a 10 | | W/288 | 1100 | \Box | - 10 | 1.00 | | - | | W1546 | 77/6.1 | | 11 | 15 | | 10.1 | 76. | 1/6201 | 11776 | | 10 | 16. | | MINNE | 1 | 4/3/2009 | 1210 | | 18 | 10 | | 10.1 | T.E. | 400/2014 | 1170 | - | 10 | 160 | | 100 A/- (1 | | - 6/9/2013 4 · | \$740 | | 10 | 100 | | - | | - TOTAL I | | | | 1.00 | | -UW.11 | | 3/0-2011 | 5 | | | 140 | | - Va 17 | | ar12/2008 | | | 46 | - In- | | SERIE. | | 100 13 http:// | Dy | | 750 | - 10: | | 345/4/11 | 1 | A/19/2001 | 150 | | ih/ | 165 | | SERVE | | 674472015 | | | Tour | 107 | | | | #E16/2013 # | | | 511 | 101 | | WORLD | | 4/19/2009 | See | | 191 | - (0 | | - | | 6/18/2004 | 2.64 | | 710 | 140- | | | | - N. M. (200) | 2100 | | | - 10 | | - 1 | | # TO 18 | Ame | | | | | | | WEST. | 500 | | - 15 | | | | | w/20/10045 | 76 | | | .005 | | - T- | | 0.720.720 5 0 | | | | 10 | | 100 | | 072A72013 | Liber | | | 10 | | 507W1T | | 6/25/2019 | - 173 _{tel} | | | 10 | | No. of Contrast | | 67267200 | | 7 | | 10 | | MITT | - | -9/27/2015 | Jbs. | | The state of | 10 | | MI NOTE | | 0/30/2019 | This | | | .102 | | - | | ACTUTALS. | | | | 10 | | eties . | | -0/MC0016+ | 1967 | | - | | | -10.00 | | of the said by | 100 | - | | | | | | | | - | | | | | | - | 77.7 | - | | | | of the Maria | | C344 | 1286 | | | 5.00 | | BACTON HE | | - 6/A/2015 | 1. Day | Total L | 40 | -600 | |--------------|-----|-----------------|--------|---------|--------------|---------| | OU O US | | 3/4/201 | -09 | 137 | 18 | 116 | | M(-W=18) | | 4/5/2016 | 124 | | 10 | | | | | 111- | | | 70 | 10 | | March 18 | | | 7 | | (0. | - 14. | | MC U-16 | | Amustral. | Cong | | 10. | -10 | | 新型原 | | -/9/mate- | 1397 | | - 11 | 30- | | MALSW-LA. | | 87-05/2005 | Tra | 14/10 | 10 | - 0 | | 260W-14 | | SCHOOL . | Judge. | 97 | 10 | 30 | | MEW/18 | | - MTI/20H | 100 | | UL. | 407 | | MEW/4 | | - IDULTANCE - | Tho | 40/ | - 01 | TR- | | 48.3V-11 | | 1/14/2013 | 13/2 | | 10 | - 100 - | | MOWNE | | 3710204 | 3399 | | 1/2 | - (1) | | NCOVER | | Tellinicated at | 4351 | | The state of | - 4 | | NATION NO. | | 4,000,00000 | | | | 4,0 | | MC9930 | | W/18/2003 | 17g | | 10 | 160 | | MUDW 18 | | 3/19/2004 | Div | | 10 | 10 - | | 505.94.10 | | w.036/2004 | 139 | | 10. | 900 | | 2402200-118 | De. | 0733,53079 | - Live | | 10 | 10 | | 5.8.300 pt - | | Acms/Arris | - 400° | | TO . | - 71 | | MOTHER TH | | - M/21/2000 # | - Rm | 54. | 10 | 10 | | SU WOOD | | A/20/2005 | 3700 | | 1.0 | 1,0 | | Lettin Lit | | 0.625/2003 | 130 | | (8 | 19 | | MCW-14 | | - 4CB-2M14 | : 120 | | J.J | 1/8- | | (左) 11 | | 1/2/12/19 | Am. | | 10. | - = | | UE W-34 | | 6/328/2019 | . Dir. | | 1,10 | 19 | | MCW-14 - | 151 | 4729/2015 | Dist. | | (ii. | 7 Oh- | | MOVE OF A | | #1700/S015.9 | Alley. | .31 | 100 | 100 | With a part party would be excessed to clean a factory of the party rent) on the prent), one of the compared to telephone in points. He provides the provides of the compared to t ^{# (}Important) # TOTAL MAXIMUM DAILY LOAD FOR ALGAE, EUTROPHIC CONDITIONS, AND NUTRIENTS IN VENTURA RIVER, INCLUDING THE ESTUARY, AND ITS TRIBUTARIES (VR ALGAE TMDL) ## **2015 DRY SEASON DATA SUMMARY** Submitted to TMDL Responsible Parties Implementing Receiving Water Monitoring Requirements: City of Ojai City of Ventura County of Ventura Ojai Valley Sanitary District California Department of Transportation Ventura County Agricultural Irrigated Lands Group Ventura County Watershed Protection District Prepared by: Ventura County Watershed Protection District Stormwater Resources Section January 19, 2016 ## TABLE OF CONTENTS | Executive Summary | ii | |--|----| | Background | 1 | | Access Permission | 2 | | Monthly Monitoring | 2 | | Continuous Data Logging | 7 | | Observations and Lessons Learned | 17 | | Attachments to Dry Season Data Summary | 18 | | LIST OF FIGURES | | | Figure 1. Sampling Sites and Flow Observation Locations | 1 | | Figure 2. Hydrolab HL4 sonde | | | Figure 3. May 2015 - Specific Conductance (Continuous Data Logger) | | | Figure 4. May 2015 - Temperature (Continuous Data Logger) | | | Figure 5. May 2015 - pH (Continuous Data Logger) | | | Figure 6. May 2015 - Dissolved Oxygen (Continuous Data Logger) | | | Figure 7. June 2016 – TMDL-Estuary Dissolved Oxygen (Continous Data Logging) | | | Figure 9. September 2015 - Temperature (Continuous Data Logging) | | | Figure 10. September 2015 - pH (Continous Data Logging) | | | Figure 11. September 2015 - Dissolved Oxygen (Continous data logging) | | | LIST OF TABLES | | | Table 1. May - September 2015 Observation Sites | 2 | | Table 2. May - September 2015 Water Quality Sample Collection Date Agency | 3 | | Table 3. May – September 2015 Field Data | 3 | | Table 4. May - September 2015 Nutrient Data | 4 | | Table 5. May – September 2015 Monthly Algal Biomass (Chlorophyll A) and Percent Macroalgal Cover (River Sites) | | | Table 6. 2015 Dry Season Average Macroalgal Biomass and Cover_River sites | | | Table 7. 2015 Dry Season Average Macroalgal Cover_Estuary | 7 | ## ATTACHMENTS (PROVIDED AS ELECTRONIC FILES) Attachment A: Sampling event data in summary format, including water quality analytical results and field measurements. #### **EXECUTIVE SUMMARY** On behalf of the TMDL Responsible Parties, the Ventura County Watershed Protection District (District) began sampling in accordance with the VR Algae TMDL Comprehensive Monitoring Plan for Receiving Waters (CMP) on January 14, 2015. As required by the TMDL, the CMP prescribes year-round monthly water quality monitoring for nutrients and other water quality parameters at one site in the Ventura River Estuary, one site in each of the Ventura River reaches 1 – 4, and in two main tributaries, Cañada Larga and San Antonio Creek. Continuous monitoring of dissolved oxygen, pH, temperature, and conductivity are required at each site approximately quarterly. The CMP also requires monthly monitoring of algae during the dry season (May – September). This report covers the dry season monitoring from May 2015 – September 2015, including monthly checks for flow at the observations sites and the continuous data logging conducted in May and September 2015. Access permission was requested and received for all sites in time for the dry season monitoring, however TMDL-R2 is sampled approximately 200 meters upstream of the OVSD site (R5) during the dry season in order to be entirely on permitted property. All sites met the seasonal average numeric target for macroalgal cover and, with the exception of TMDL-R1, the seasonal average numeric target for chlorophyll a. All measurements for pH were within the numeric target limits, however levels of dissolved oxygen below the numeric target were measured during periods of low flow. Seven Hydrolab HL4 water quality sondes were selected for quarterly two-week continuous monitoring and first deployed for this project in March 2015. The second and third quarter deployments occurred in May and September, respectively. The issues encountered during the March deployment (false battery alarms, factory calibration errors, siltation, and water level changes (e.g. estuary breaching)) were resolved prior to the May event. The sondes with the battery alarm failures were sent back to the factory and new sondes were sent as replacements. All sondes were calibrated by District staff before each event to ensure calibrations were accurate. The estuary sonde was lowered to a depth of approximately ten feet in order to avoid exposure if the estuary breaches and reduce the risk of potential vandalism. Sondes which had experienced siltation issues were deployed higher in the water column. The sondes were programmed to log dry season data from May 7-25 and September 1-15, 2015. The estuary dissolved oxygen sensor fouled during May so was re-deployed from June 2 – 16, 2015. The dissolved oxygen data for the estuary during the May deployment
appears inaccurate and indicates a fouling of the sensor over time. Fouling of the specific conductivity sensor is suspected on the R2 sonde during the May deployment and on the R3 sonde during the September deployment, resulting in the decreasing readings for R2 and unusually low readings for R3. A false battery alarm issue occurred again during the September deployment of the R1 sonde, which shifted the data set by a few minutes but did not otherwise affect the data. All sondes were returned to the factory after the September event and new replacement sondes were sent under warranty. Southern California is currently experiencing drought conditions. The River was dry at the observation locations upstream of R4 for this reporting period. Flow variations between monitoring sites and events may be due to a combination of factors including geology, weather conditions, inputs, and extractions. Sampling event data, including photos, water quality analytical results, field measurements, laboratory reports, chain of custody forms, field data sheets, and other raw data are provided as an attachment to this report as electronic files on the CDs provided to the Responsible Parties. #### **BACKGROUND** The Water Quality Control Plan for the Los Angeles Region was amended on December 6, 2012 to incorporate the Total Maximum Daily Load for Algae, Eutrophic Conditions, and Nutrients in Ventura River, including the Estuary, and its Tributaries (VR Algae TMDL). The VR Algae TMDL became effective on June 28, 2013 and required the development and implementation a comprehensive monitoring plan (CMP) for receiving water monitoring to assess numeric attainment and measure in-stream nutrient concentrations. The CMP submitted by the Responsible Parties (Ojai Valley Sanitary District, Ventura County Watershed Protection District, County of Ventura, City of Ojai, City of San Buenaventura (Ventura), California Department of Transportation, and the Ventura County Agricultural Irrigated Lands Group (represented by the Farm Bureau of Ventura County)) was approved by the Los Angeles Regional Water Quality Control Board (Regional Board) on October 20, 2014. On November 18, 2014, the Ventura County Watershed Protection District (District) was retained by the Responsible Parties to conduct the monitoring in accordance with the CMP for up to 5 years. The CMP required sampling to begin no later than 90 days after the Los Angeles Regional Water Quality Control Board approved the CMP, which equates to January 18, 2015. Monitoring began on January 14, 2015. As required by the TMDL, the CMP prescribes year-round monthly water quality monitoring for nutrients and other water quality parameters at one site in the Ventura River Estuary, one site in each of the Ventura River reaches 1-4, and in two main tributaries, Cañada Larga and San Antonio Creek. Continuous monitoring of dissolved oxygen, pH, temperature, and conductivity are required at each site approximately quarterly. The CMP also requires monthly monitoring of algae during the dry season (May – September). This report is a summary of dry season monitoring data from May – September 2015, including the continuous data logging conducted in May and September. FIGURE 1. SAMPLING SITES AND FLOW OBSERVATION LOCATIONS Note: Yellow site markers (black labels) are sampling locations. Blue site markers (blue labels) are flow observation locations. #### **Access Permission** Special access permission for wet season monitoring is not needed for TMDL-Est, TMDL-R1, TMDL-R4, TMDL-CL, and TMDL-SA due to public right-of-way and other agencies' land ownership, however access permission is required for dry season sampling (May – September), as the monitoring protocols utilize a 150 meter reach of the river. Access permission prior to wet season sampling was needed for TMDL-R2 and TMDL-R3. The District utilized the services of the County of Ventura's Real Estate Services Division (RES) to request access permission from the owners of the properties on which the monitoring sites as listed in the CMP are located. Five-year easements were sought from the property owners for the fee of \$250 per term. The temporary easements will expire five years from the date of approval (early 2020). With the exception of site TMDL-R2, permission was granted by the property owners for all sites. Two property owners declined the five year easement request but signed an annual access permit instead. The sites affected by the annual permits are TMDL-R2 upstream of the site listed in the CMP and TMDL-SA directly above the confluence with the Ventura River. A new access permit will be required to sample these two sites beyond February 2016. TMDL-R2 will be sampled approximately 200 meters upstream of the OVSD site (R5) during the dry season in order to be entirely on permitted property. ### MONTHLY MONITORING The 2015 dry season sampling occurred monthly starting in May through September as required. There was no connectivity between the upper and lower watershed, as shown in Table 1. TMDL-CL was dry May through September. Dry season sample dates and the collecting agency are shown in Table 2 (sample sites that were dry are noted as such and shaded grey). Monthly field data is summarized in Table 3 and nutrient data in Table 4. The District contracted with Aquatic Bioassay & Consulting Laboratories, Inc. (ABC) for assistance with the monthly monitoring of chlorophyll *a* and percent cover of algae during the dry season, May to September. Algal biomass and percent cover data are summarized in Tables 5 - 7. **TABLE 1. MAY - SEPTEMBER 2015 OBSERVATION SITES** | Date | Ventura River at Hwy
150 | Ventura River at Santa
Ana Blvd | Ventura River at Casitas Road | |-----------|-----------------------------|------------------------------------|--| | 5/21/2015 | DRY | DRY | Flowing east side 2-3 cfs, flowing west side ~1cfs | | 6/16/2015 | DRY | DRY | Flowing 2-3 cfs | | 7/16/2015 | DRY | DRY | Pond NW side at bridge, NE channels flowing 2-3 cfs | | 8/12/2015 | DRY | DRY | Ponded east and west side of riverbed, upstream and downstream of bridge | | 9/23/2015 | DRY | DRY | Ponds on eastside of riverbed, dry on west side | There was no connectivity with the upper watershed during the 2015 dry season. TABLE 2. MAY - SEPTEMBER 2015 WATER QUALITY SAMPLE COLLECTION DATE AGENCY | Site | Collecting | | | Sampling Date | 9 | | |-----------|--------------|-------------|-------------|---------------|-------------|----------------| | Site | Agency | May 2015 | June 2015 | July 2015 | August 2015 | September 2015 | | TMDL-Est | District/ABC | 5/22/2015 | 6/19/2015 | 7/16/2015 | 8/12/2015 | 9/23/2015 | | TMDL-R1 | District/ABC | 5/21/2015 | 6/19/2015 | 7/16/2015 | 8/12/2015 | 9/23/2015 | | TMDL-R2 | District/ABC | 5/20/2015 | 6/18/2015 | 7/15/2015 | 8/11/2015 | 9/22/2015 | | TMDL-R3 | District/ABC | 5/20/2015 | 6/18/2015 | 7/15/2015 | 8/11/2015 | 9/22/2015 | | TMDL-R4 | District/ABC | 5/20/2015 | 6/18/2015 | DRY | DRY | DRY | | TIVIDL-N4 | DISTRICT/ABC | 3/20/2013 | 0/16/2015 | (7/15/2015) | (8/11/2015) | (9/22/2015) | | TMDL-CL | District/ABC | DRY | DRY | DRY | DRY | DRY | | HVIDL-CL | District/ABC | (5/20/2015) | (6/18/2015) | (7/15/2015) | (8/11/2015) | (9/23/2015) | | TMDL-SA | District/ABC | 5/20/2015 | 6/19/2015 | DRY | DRY | DRY | | TIVIDE-3A | District/ABC | 3/20/2013 | 0/15/2015 | (7/15/2015) | (8/11/2015) | (9/22/2015) | TABLE 3. MAY – SEPTEMBER 2015 FIELD DATA | Site | Sample
Date | Sample
Time | Berm
Status | Flow
Field
Meter
(cfs) | pH
Field
Meter
(pH Units) | DO
Field
Meter
(mg/L) | SC
Field
Meter
(μS/cm) | Salinity
Field
Meter
(ppt) | Water
Temp
Field
Meter
(°C) | |----------|----------------|----------------|----------------|---------------------------------|------------------------------------|--------------------------------|---------------------------------|-------------------------------------|---| | | | | | | Numeric
Target
6.5 - 8.5 | Numeric
Target
>7 mg/L | | | | | TMDL-Est | 5/22/2015 | 8:40 | Closed | NA | 8.17 | 9.94 | 6240 | 3.34 | 19.4 | | TMDL-Est | 6/19/2015 | 11:10 | Closed | NA | 8.24 | 9.66 | 2570 | 1.3 | 25.6 | | TMDL-Est | 7/16/2015 | 11:20 | Closed | NA | 8.08 | 8.29 | 1733 | 0.9 | 25.1 | | TMDL-Est | 8/12/2015 | 11:40 | Closed | NA | 8.29 | 9.78 | 3223 | 1.7 | 23.9 | | TMDL-Est | 9/23/2015 | 11:10 | Closed | NA | 8.5 | 9.4 | 2405 | 1.2 | 25.3 | | TMDL-R1 | 5/21/2015 | 9:30 | NA | 2.09 | 8.00 | 8.65 | 1660 | 0.8 | 17.8 | | TMDL-R1 | 6/19/2015 | 8:25 | NA | 1.86 | 8.04 | 7.56 | 1660 | 0.8 | 19.9 | | TMDL-R1 | 7/16/2015 | 8:00 | NA | 1.84 | 8.13 | 6.55 | 1433 | 0.8 | 20.7 | | TMDL-R1 | 8/12/2015 | 8:00 | NA | 0.26* | 7.97 | 7.19 | 1811 | 0.9 | 19.4 | | TMDL-R1 | 9/23/2015 | 7:45 | NA | 0.16* | 7.81 | 6.46 | 1904 | 1 | 21.0 | | TMDL-R2 | 5/20/2015 | 14:00 | NA | 4.9 | 7.98 | 8.78 | 1309 | NA | 20.7 | | TMDL-R2 | 6/18/2015 | 13:10 | NA | 3.24 | 7.88 | 9.33 | 1300 | NA | 22.6 | | TMDL-R2 | 7/15/2015 | 11:25 | NA | 3.4 | 7.9 | 7.72 | 1218 | NA | 22.5 | | TMDL-R2 | 8/11/2015 | 11:20 | NA | 1.09 | 7.87 | 6.34 | 1343 | NA | 23.6 | | TMDL-R2 | 9/22/2015 | 11:25 | NA | 1.91 | 7.91 | 6.65 | 1256 | NA | 25.7 | | TMDL-R3 | 5/20/2015 | 11:35 | NA | 1.45 | 7.94 | 8.82 | 1219 | NA | 18 | | TMDL-R3 | 6/18/2015 | 11:00 | NA | 1.61 | 7.86 | 7.7 | 1228 | NA | 19.5 | | TMDL-R3 | 7/15/2015 | 9:15 | NA | 2.28 | 7.88 | 6.9 | 805 | NA | 19.6 | | TMDL-R3 | 8/11/2015 | 8:00 | NA | <0.10* | 7.64 | 6.75 | 1277 | NA | 19.3 | | TMDL-R3 | 9/22/2015 | 9:00 | NA | 0.13* | 7.42 | 4.82 | 1320 | NA | 20.7 | | TMDL-R4 | 5/20/2015 | 8:35 | NA | 0.04 | 7.4 | 6.35 | 1059 | NA | 15.5 | | TMDL-R4 | 6/18/2015 | 8:25 | NA | PONDED | 7.16 | 3.86 | 1092 | NA | 17.5 | | TMDL-R4 | 7/15/2015 | 8:00 | NA | DRY | DRY | DRY | DRY | NA | DRY | | Site | Sample
Date | Sample
Time
 Berm
Status | Flow
Field
Meter
(cfs) | pH
Field
Meter
(pH Units) | DO
Field
Meter
(mg/L) | SC
Field
Meter
(μS/cm) | Salinity
Field
Meter
(ppt) | Water
Temp
Field
Meter
(°C) | |---------|----------------|----------------|----------------|---------------------------------|------------------------------------|--------------------------------|---------------------------------|-------------------------------------|---| | | | | | | Numeric
Target
6.5 - 8.5 | Numeric
Target
>7 mg/L | | | | | TMDL-R4 | 8/12/2015 | 8:30 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-R4 | 9/22/2015 | 7:30 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-CL | 5/20/2015 | 7:00 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-CL | 6/18/2015 | 10:40 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-CL | 7/16/2015 | 10:15 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-CL | 8/12/2015 | 10:30 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-CL | 9/23/2015 | 10:05 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-SA | 5/20/2015 | 10:30 | NA | 0.03* | 7.16 | 4.82 | 1034 | NA | 17.5 | | TMDL-SA | 6/18/2015 | 9:40 | NA | 0.05* | 7.24 | 4.53 | 1056 | NA | 17.3 | | TMDL-SA | 7/15/2015 | 8:40 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-SA | 8/12/2015 | 8:45 | NA | DRY | DRY | DRY | DRY | NA | DRY | | TMDL-SA | 9/22/2015 | 7:45 | NA | DRY | DRY | DRY | DRY | NA | DRY | ^{*} The flow during this event was below the threshold for accurate meter measurement. These results are estimated and subject to error. NA: Not applicable. Berm status only applies to the estuary site TMDL-Est. Salinity is included for the TMDL-Est and TMDL-R1 sites to indicate the level of ocean influence at these sites. Flow at R4 and above was minimal to none during this reporting period. Surface flow in the River began around Foster Park and is typically perennial at R3 and below. The flow at R2 is a combination of the flow in the Ventura River downstream of R3 and the discharge from the Ojai Valley Sanitary District's wastewater treatment plant. Flow decreased between R2 and R1. Potential causes for changes in flow include surface/subsurface flow, groundwater interaction, geology and infiltration rates, antecedent moisture, agricultural and urban inputs and extractions, etc. Ponded locations, and those with shallow and/or slow moving water appear to experience greater variation in measured levels of DO and so ponds will be avoided where possible, but may not be able to be avoided in all cases. All measurements for pH were within the numeric target limits. Low levels of dissolved oxygen tended to occur during periods of low flow, possibly due to the ponding of water upstream and/or at the measurement location. **TABLE 4. MAY - SEPTEMBER 2015 NUTRIENT DATA** | Site | Sample
Date | Sample
Time | P Total
EPA
365.1
(mg/L) | P Diss
EPA
365.1
(mg/L) | TKN
Total
EPA
351.2
(mg/L) | TKN Diss EPA 351.2 (mg/L) | N Total
Calculated
(mg/L) | N Diss
Calculated
(mg/L) | NO3+
NO2-N
EPA
353.2
(mg/L) | |----------|----------------|----------------|-----------------------------------|----------------------------------|--|---------------------------|---------------------------------|--------------------------------|---| | TMDL-Est | 5/22/2015 | 8:40 | 0.063 | 0.032 | 0.33 | 0.35* | 0.33 | 0.35 | ND | | TMDL-Est | 6/19/2015 | 11:10 | 0.06 | 0.02 | 0.53 | 0.43 | 0.53 | 0.43 | ND | | TMDL-Est | 7/16/2015 | 11:20 | 0.041 | 0.015 | 0.52 | 0.3 | 0.57 | 0.34 | 0.043 | | TMDL-Est | 8/12/2015 | 11:40 | 0.4 | 0.015 | 0.61 | 0.51 | 0.63 | 0.54 | 0.023 | | TMDL-Est | 9/23/2015 | 11:10 | 0.042 | 0.02 | 0.86 | 0.56 | 0.89 | 0.59 | 0.031 | | TMDL-R1 | 5/21/2015 | 9:30 | 0.12 | 0.059 | 0.51 | 0.3 | 0.55 | 0.35 | 0.0456 | | TMDL-R1 | 6/19/2015 | 8:25 | 0.088 | 0.067 | 0.43 | 0.24 | 0.49 | 0.3 | 0.06 | | Site | Sample
Date | Sample
Time | P Total
EPA
365.1
(mg/L) | P Diss
EPA
365.1
(mg/L) | TKN
Total
EPA
351.2
(mg/L) | TKN Diss EPA 351.2 (mg/L) | N Total
Calculated
(mg/L) | N Diss
Calculated
(mg/L) | NO3+
NO2-N
EPA
353.2
(mg/L) | |---------|----------------|----------------|-----------------------------------|----------------------------------|--|---------------------------|---------------------------------|--------------------------------|---| | TMDL-R1 | 7/16/2015 | 8:00 | 0.011 | 0.086 | 0.44 | 0.44 | 0.74 | 0.74 | 0.3 | | TMDL-R1 | 8/12/2015 | 8:00 | 0.18 | 0.15 | 0.62 | 0.6 | 0.81 | 0.79 | 0.19 | | TMDL-R1 | 9/23/2015 | 7:45 | 0.35 | 0.26 | 0.74 | 0.52 | 1.1 | 0.85 | 0.32 | | TMDL-R2 | 5/20/2015 | 14:00 | 0.22 | 0.18 | 0.34 | 0.42 | 1.1 | 1.1 | 0.71 | | TMDL-R2 | 6/18/2015 | 13:10 | 0.12 | 0.11 | 0.28 | 0.27 | 0.81 | 0.81 | 0.54 | | TMDL-R2 | 7/15/2015 | 11:25 | 0.17 | 0.15 | 0.22 | 0.15 | 0.86 | 0.89 | 0.63 | | TMDL-R2 | 8/11/2015 | 11:20 | 0.71 | 0.7 | 0.87 | 0.71 | 1.9 | 1.7 | 1 | | TMDL-R2 | 9/22/2015 | 11:25 | 1.2 | 1.1 | 0.76 | 0.74 | 2.6 | 2.6 | 1.9 | | TMDL-R3 | 5/20/2015 | 11:35 | 0.014 | 0.01 | 0.054 | ND | ND | ND | 0.061 | | TMDL-R3 | 6/18/2015 | 11:00 | 0.013 | 0.011 | 0.08 | 0.057 | ND | ND | 0.076 | | TMDL-R3 | 7/15/2015 | 9:15 | 0.013 | 0.0095 | ND | ND | ND | ND | 0.092 | | TMDL-R3 | 8/11/2015 | 8:00 | 0.022 | 0.015 | 0.19 | ND | 0.28 | ND | 0.088 | | TMDL-R3 | 9/22/2015 | 9:00 | 0.079 | 0.018 | 0.42 | ND | 0.51 | ND | 0.087 | | TMDL-R4 | 5/20/2015 | 8:35 | 0.0055 | 0.0046 | 0.075 | 0.055 | 1.4 | 1.4 | 1.4 | | TMDL-R4 | 6/18/2015 | 8:25 | 0.0047 | 0.0061 | ND | ND | 1.2 | 1.2 | 1.2 | | TMDL-R4 | 7/15/2015 | 8:00 | DRY | TMDL-R4 | 8/12/2015 | 8:30 | DRY | TMDL-R4 | 9/22/2015 | 7:30 | DRY | TMDL-CL | 5/20/2015 | 7:00 | DRY | TMDL-CL | 6/18/2015 | 10:40 | DRY | TMDL-CL | 7/16/2015 | 10:15 | DRY | TMDL-CL | 8/12/2015 | 10:30 | DRY | TMDL-CL | 9/23/2015 | 10:05 | DRY | TMDL-SA | 5/20/2015 | 10:30 | 0.0076 | 0.0073 | 0.24 | ND | 1.9 | 1.7 | 1.7 | | TMDL-SA | 6/18/2015 | 9:40 | 0.019 | 0.0063 | 0.11 | 0.074 | 1.3 | 1.3 | 1.2 | | TMDL-SA | 7/15/2015 | 8:40 | DRY | TMDL-SA | 8/12/2015 | 8:45 | DRY | TMDL-SA | 9/22/2015 | 7:45 | DRY TABLE 5. MAY – SEPTEMBER 2015 MONTHLY ALGAL BIOMASS (CHLOROPHYLL A) AND PERCENT MACROALGAL COVER (RIVER SITES) | Site | Date | Field
Replicate | Number of
Transects
Collected | Chlorophyll a | Chlorophyll a units | Percent Presence
Macroalgae (%) | |---------|-----------|--------------------|-------------------------------------|---------------|---------------------|------------------------------------| | TMDL-R1 | 5/21/2015 | 1 | 11 | 206.9 | mg/m² | 13.59 | | TMDL-R1 | 6/19/2015 | 1 | 10 | 140 | mg/m² | 6.19 | | TMDL-R1 | 6/19/2015 | 2 | 10 | 190 | mg/m² | NA | | TMDL-R1 | 7/16/2015 | 1 | 10 | 170 | mg/m² | 4.26 | | TMDL-R1 | 8/12/2015 | 1 | 11 | 520 | mg/m² | 0.00 | | TMDL-R1 | 9/23/2015 | 1 | 10 | 300 | mg/m² | 0.00 | | TMDL-R2 | 5/20/2015 | 1 | 9 | 61 | mg/m² | 9.88 | | TMDL-R2 | 6/18/2015 | 1 | 11 | 75.9 | mg/m² | 1.90 | | Site | Date | Field
Replicate | Number of
Transects
Collected | Chlorophyll a | Chlorophyll <i>a</i> units | Percent Presence
Macroalgae (%) | |---------|-----------|--------------------|-------------------------------------|---------------|----------------------------|------------------------------------| | TMDL-R2 | 7/15/2015 | 1 | 11 | 63 | mg/m² | 0.00 | | TMDL-R2 | 8/11/2015 | 1 | 7 | 110 | mg/m² | 1.64 | | TMDL-R2 | 9/22/2015 | 1 | 11 | 138 | mg/m² | 0.00 | | TMDL-R3 | 5/20/2015 | 1 | 11 | 51 | mg/m² | 42.72 | | TMDL-R3 | 6/18/2015 | 1 | 11 | 75.5 | mg/m² | 8.65 | | TMDL-R3 | 7/15/2015 | 1 | 11 | 68 | mg/m² | 8.74 | | TMDL-R3 | 8/11/2015 | 1 | 11 | 100 | mg/m² | 18.56 | | TMDL-R3 | 9/22/2015 | 1 | 11 | 54 | mg/m² | 21.00 | | TMDL-R4 | 5/20/2015 | 1 | 11 | 21 | mg/m² | 22.33 | | TMDL-R4 | 6/18/2015 | 1 | 5 | 26.3 | mg/m² | 32.76 | | TMDL-R4 | 7/15/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-R4 | 8/12/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-R4 | 9/22/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-SA | 5/20/2015 | 1 | 3 | 97.4 | mg/m² | 8.70 | | TMDL-SA | 6/18/2015 | 1 | 3 | 30 | mg/m² | 13.64 | | TMDL-SA | 7/15/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-SA | 8/12/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-SA | 9/22/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-CL | 5/20/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-CL | 6/18/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-CL | 7/15/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-CL | 8/12/2015 | 1 | DRY | DRY | mg/m² | DRY | | TMDL-CL | 9/22/2015 | 1 | DRY | DRY | mg/m² | DRY | All riverine sites met the seasonal average numeric target for macroalgal cover and, with the exception of TMDL-R1, they also met the seasonal average numeric target for chlorophyll *a*. TABLE 6. 2015 DRY SEASON AVERAGE MACROALGAL BIOMASS AND COVER_RIVER SITES | Site | Seasonal Average Biomass (Chlorophyll a) | Seasonal Average Macroalgal Cover | |---------|---|--| | | Numeric Target Seasonal Average 150 mg/m² (mg/m²) | Numeric Target Seasonal Average ≤ 30%
(%) | | TMDL-R1 | 254.5 | 4.8 | | TMDL-R2 | 89.6 | 2.7 | | TMDL-R3 | 69.7 | 19.9 | | TMDL-R4 | 23.7 | 27.5 | | TMDL-SA | 63.7 | 11.2 | | TMDL-CL | DRY | DRY | The SWAMP protocol for determining percent cover for the riverine sites only considers alive algae whereas the Bight '08 protocols do not specify whether dead or desiccated algae should be included with alive algae in the calculations. The Bight '08 study also includes measurements of floating algae at a depth of 0.3 meters for four quadrats per transect, in addition to measuring algal cover on the shoreline. All of these variables are included in Table 7 and all met the seasonal average numeric target. TABLE 7. 2015 DRY
SEASON AVERAGE MACROALGAL COVER_ESTUARY | | | Biomass | Land-Based Percent Cover (%) | | | Floating Percent Cover (%) | | | |-------------|-----------------------|----------------------|------------------------------|-------|-------|----------------------------|-------|-------| | Site Date | Phytoplankton | Alive | Dead | All | Alive | Dead | All | | | Site | Date | Chlorophyll a (μg/L) | Algae | Algae | Algae | Algae | Algae | Algae | | Seasonal Av | verage Numeric Target | 20 μg/L | 20 μg/L ≤ 15% | | | | | | | TMDL-Est | 5/22/2015 | 6 | 2.31 | 0.20 | 2.04 | 0.75 | 0.00 | 0.75 | | TMDL-Est | 6/19/2015 | 6 | 24.42 | 4.42 | 20.60 | 0.00 | 0.00 | 0.00 | | TMDL-Est | 7/16/2015 | 7 | 9.32 | 16.73 | 18.61 | 0.00 | 0.00 | 0.00 | | TMDL-Est | 8/12/2015 | <2 | 6.46 | 0.00 | 4.62 | 0.00 | 0.00 | 0.00 | | TMDL-Est | 9/23/2015 | 12 | 1.84 | 9.80 | 8.31 | 0.00 | 0.00 | 0.00 | | TMDL-Est | Seasonal Average | 6.4 | 8.87 | 6.23 | 10.84 | 0.15 | 0.00 | 0.15 | ### CONTINUOUS DATA LOGGING Seven Hydrolab HL4 water quality data sondes (Figure 2) were selected and purchased for this program. The HL4 has the ability to accurately measure and log dissolved oxygen, conductivity, pH and temperature within a self-contained package that is 1.75" in diameter and just over two feet in length, which allows it to fit inside a short length protective housing of 2" diameter schedule 40 pipe. The data sonde installations are vulnerable to potential vandalism and theft and so need to be as inconspicuous as possible (i.e. below the water surface among rocks and tree roots). Each sonde is assigned to a particular TMDL site and is labeled with the site name for additional consistency between events. Pre and post calibrations and/or calibration checks are performed for each deployed sonde for each event (data included in attachments). FIGURE 2. HYDROLAB HL4 SONDE Continuous monitoring for pH, specific conductivity, temperature, and dissolved oxygen was conducted for a two week period at all sites in May and September. After the first deployment in March when the estuary breached and left the estuary sonde exposed to potential vandalism or theft, the placement was redesigned to 10 feet below the water surface. The deeper placement of the sonde likely contributed to the lack of diurnal variability in the estuary sonde temperature data observed in the May and September continuous data logging events. Six Hydrolab HL4 water quality data sondes were installed on May 7, 2015 and were programmed to log data from May 7, 2015 at 21:00 to May 25, 2015 at 21:00 (Figure 3, Figure 4, Figure 5, and Figure 6). TMDL-CL was dry so the sonde could not be deployed. It is suspected that the specific conductance sensor at TMDL-R2 fouled during the data logging as the results are far below expected and those measured above and below stream (Figure 3). The dissolved oxygen sensor on the estuary sonde also fouled and the sonde was calibrated and redeployed to log data from June 2, 2015 at 13:00 to June 16, 2015 at 13:00 (Figure 7). In September, three TMDL monitoring stations (TMDL-R4, TMDL-SA, and TMDL-CL) were dry and so only four Hydrolab HL4 water quality data sondes were installed for continuous data logging. The sondes were installed on September 1, 2015 at TMDL-Est, TMDL-R1, TMDL-R2, and TMDL-R3 and programmed to log data from September 1, 2015 at 19:00 to September 15, 2015 at 19:00 (Figure 8, Figure 9, Figure 10, and Figure 11). The specific conductance and salinity at TMDL-R3 were lower than those typically seen in natural waters, however the pre and post calibration checks were within acceptable levels. Based on consultation with Hydrolab technicians, it is suspected that debris lodged in the sonde's conductivity chamber during deployment and was dislodged during sonde removal. A firmware bug in the TMDL-R1 also caused a false battery alarm which shifted the data by a few minutes but did not otherwise affect the data. All sondes were returned to the factory under warranty after the September deployment and replaced with brand new sondes. The battery failure alarm required a change to the circuit board to rectify. Graphical representations of the March, May, and September continuous monitoring data are presented together in the attachments to this report. FIGURE 3. MAY 2015 - SPECIFIC CONDUCTANCE (CONTINUOUS DATA LOGGER) Note: The TMDL-R2 results for specific conductance are highly suspect, as the values decreased noticeably from the time of deployment and dropped well below both the expected range and the values measured by the upstream and downstream sondes. Fouling is suspected. The data is excluded from this chart but is included in the electronic attachments to this report. Specific conductance is not a required continuous monitoring parameter so the sonde was not re-deployed for this quarter. FIGURE 4. MAY 2015 - TEMPERATURE (CONTINUOUS DATA LOGGER) Note: The deeper placement of the sonde likely contributed to the lack of diurnal variability in the estuary sonde temperature data. #### FIGURE 5. MAY 2015 - PH (CONTINUOUS DATA LOGGER) FIGURE 6. MAY 2015 - DISSOLVED OXYGEN (CONTINUOUS DATA LOGGER) Note: The TMDL-Est dissolved oxygen results are suspected to be incorrect. A sonde was re-deployed from June 6, 2015 to June 15, 2015 at TMDL-Est to log dissolved oxygen (Figure 7). The TMDL-Est data is excluded from this chart but is included in the electronic attachments to this report. FIGURE 7. JUNE 2016 - TMDL-ESTUARY DISSOLVED OXYGEN (CONTINOUS DATA LOGGING) FIGURE 8. SEPTEMBER 2015 - SPECIFIC CONDUCTANCE (CONTINOUS DATA LOGGING) Note: The TMDL-R3 specific conductivity results are lower than expected but the pre and post deployment calibration checks were within acceptance limits. Fouling is suspected. The data is excluded from this chart but is included in the electronic attachments to this report. Specific conductance is not a required continuous monitoring parameter the sonde was not redeployed for this guarter. FIGURE 9. SEPTEMBER 2015 - TEMPERATURE (CONTINOUS DATA LOGGING) #### FIGURE 10. SEPTEMBER 2015 - PH (CONTINOUS DATA LOGGING) FIGURE 11. SEPTEMBER 2015 - DISSOLVED OXYGEN (CONTINOUS DATA LOGGING) ## **OBSERVATIONS AND LESSONS LEARNED** Southern California is currently experiencing drought conditions. The River was dry at the observation locations upstream of R4 for this reporting period. Flow variations between monitoring sites and events are likely due to a combination of factors, including geology, temperature, inputs, and extractions. Ponded locations, and those with shallow and/or slow moving water appear to experience greater variation in measured levels of DO and so ponds will be avoided where possible, but may not be able to be avoided in all cases. Siltation can be an issue in slow moving water and sondes will be installed higher in the water column in areas where it is likely to occur. All sondes were checked and/or calibrated by monitoring staff before and after deployment, regardless of history. The equipment used to secure the estuary sonde has been modified to better accommodate the variations in water level associated with changes in berm status (i.e. open vs. closed). All monthly grab measurements for pH were within the numeric target limits of pH 6.5-8.5, as were the May and September continuous data logger results with the exception of TMDL-R1, which experienced a period of high pH in combination with low conductivity and an increase in dissolved oxygen between 2 and 9 pm on September 10, 2015, it is unknown if this was due to a discharge, a decrease in flow (exposing the sonde to air), or a sonde malfunction. Levels of dissolved oxygen were observed at some sites during the monthly grab monitoring, and appear to be associated with low flow, possibly due to the ponding of water upstream and/or at the measurement location. Dissolved oxygen levels below the numeric target of 7 mg/L were observed at least intermittently at all sites during both the May and September continuous data logger deployments. Temperature displayed a diurnal pattern at most sites but the pattern was muted at TMDL-Est, likely due to the deeper level of deployment. Specific conductance remained relatively stable at most sites during the May and September deployments, with the exception of TMDL-R2 in May and TMDL-R3 in September, which appear to have suspect readings, based on their comparison with nearby sites. TMDL-Est appears to have experienced a greater ocean influence in May (average conductivity $40,000 \, \mu \text{S/cm}$) than in September (average conductivity $2,800 \, \mu \text{S/cm}$). # ATTACHMENTS TO DRY SEASON DATA SUMMARY Sampling event data, including water quality analytical results and field measurements, in a summary format using MS Excel spreadsheet are provided as electronic files on the CD provided to the Responsible Parties.