Ventura County Water Quality Index Technical Report

Bram Sercu

County of Ventura Watershed Protection District March 2013

Description

The Ventura County Water Quality Index mathematically combines a number of variables, based on a large set of monitoring data, in one easily understood value. It was developed specifically for the County of Ventura to summarize chemical, microbiological and toxicity monitoring data, and is based on the Alberta River Water Quality Index (<u>http://environment.alberta.ca/01275.html</u>) and the CCME Water Quality Index¹. The Index provides a simple snapshot of annual water quality conditions in the main rivers of the County.

Methodology

The Ventura County Water Quality Index is calculated annually for each watershed, for dry and wet weather separately, based on the average of six sub-indices calculated for six variable groups:

- Salts
- Bacteria
- Nutrients
- Organics (includes pesticides)
- Metals
- Toxicity

The constituents included in the index were selected based on their relevance to river water quality. They include almost all constituents that have exceeded water quality objectives since 2004 in the County of Ventura receiving waters (excluding a few that correlate with other constituents) and all pesticides that were detected by the MS4 outfall monitoring program (often these do not have water quality objectives). Toxicity test results are included in the toxicity variable group.

Most chemistry and microbiology variables are currently measured once per year during dry weather and three times per year during storm events. Toxicity is currently measured for the first wet event per year (seasonal first flush).

The constituents included in the Ventura County Water Quality Index are summarized in Table 1, together with the water quality objectives or other environmentally relevant although not enforceable thresholds applicable during dry and wet weather.

¹ Canadian Council of Ministers of the Environment (2001). Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, Technical Report, <u>http://www.ccme.ca/assets/pdf/wgi_techrprtfctsht_e.pdf</u> (accessed on February 21, 2013).

Constituents	Units	Threshold drv	Threshold wet	Threshold reference		
Salts						
Total Dissolved Solids	mg/l	SSO	SSO	WQO		
Chloride	mg/l	SSO	SSO	WQO		
Organics						
2,4,5-T	ug/l	70	n/a	US EPA IRIS Reference Dose		
2,4-D	ug/l	70	70	WQO		
2,4-DB	ug/l	56	n/a	US EPA IRIS Reference Dose		
4,4'-DDE	ug/l	0.00059	n/a	WQO		
4,4'-DDT	ug/l	0.00059	1.1	WQO		
Aldrin	ug/l	0.00013	3	WQO		
				US EPA National Recommended Water		
Azinphos methyl	ug/l	0.01	0.01	Quality Criteria		
Bromacil	ug/l	70	n/a	US EPA Drinking Water Health Advisory		
				CA Department of Fish and Game		
Chlorpyrifos	ug/l	0.014	0.02	Recommended criterion		
Dalapon	ug/l	200	n/a	Drinking water MCL		
DCPA (Dacthal)	ug/l	0.008	14300	US EPA IRIS Reference Dose		
				National Academy of Sciences Drinking		
delta-BHC	ug/l	500	n/a	Water Health Advisory		
				US EPA National Recommended Water		
Demeton-O	ug/l	0.1	n/a	Quality Criteria		
				US EPA National Recommended Water		
Demeton-S	ug/l	0.1	n/a	Quality Criteria		
				CA Department of Fish and Game		
Diazinon	ug/l	0.05	0.08	Recommended criterion		
Dicamba	ug/l	210	n/a	US EPA IRIS Reference Dose		
			,	CA DPH Drinking Water Notification		
Dimethoate	ug/I	1	n/a			
Dishearanid		200	- 1-	CA DPH Drinking Water Notification		
Dipnenamid	ug/l	200	n/a 700	Level		
Giyphosate	ug/I	700	700	WQU		
Malathian	ug/I	0.1	0.1	Osepa National Recommended Water		
Matalachlor	ug/l	0.1	100	US EBA Drinking Water Health Advisory		
Pentachlorophenol	ug/l	44	100			
Simazine	ug/l	1	1	WQ0		
Toyanhene	ug/l	4	4	WQ0		
Renzo(a)nyrene	ug/l	0.00073	0.73	WQO		
Chrysene	ug/l	0.0044	0.2 n/a	WQO		
ПЕНР		1.8	1/4	WQO		
		23000		WQO		
Bacteria	ug/1	23000	ii/a			
	MPN/100 ml	225	225	WOO		
Nutrients		235	235			
DO	mø/l	5	5	WOO		
nH	nH units	65-85	65-86	WOO		
1 Y ' '	pri units	0.5-0.5	0.5-0.0			

Table 1. Constituents included in the Ventura County Water Quality Index and applicable water qualityobjectives or other thresholds.

Nitrate-N	mg/l	10	10	WQO
Ammonia-N	mg/l	calc	calc	WQO
MBAS	mg/l	0.5	0.5	WQO
Metals				
Aluminum, total	ug/l	1000	1000	WQO
Antimony, total	ug/l	6	6	WQO
Arsenic, total	ug/l	50	50	WQO
Barium, total	ug/l	1000	1000	WQO
Beryllium, total	ug/l	4	4	WQO
Cadmium, total	ug/l	5	5	WQO
Cadmium, dissolved	ug/l	calc	calc	WQO
Chromium, total	ug/l	50	50	WQO
Chromium, VI	ug/l	calc	calc	WQO
Copper, dissolved	ug/l	calc	calc	WQO
Lead, dissolved	ug/l	calc	calc	WQO
Mercury, total	ug/l	0.05	2	WQO
Nickel, total	ug/l	100	100	WQO
Nickel, dissolved	ug/l	calc	calc	WQO
Selenium, total	ug/l	5	50	WQO
Silver, dissolved	ug/l	calc	calc	WQO
Thallium, total	ug/l	2	2	WQO
Thallium, dissolved	ug/l	1.7	n/a	WQO
Zinc, dissolved	ug/l	calc	calc	WQO
Toxicity				
IC50	%	100	100	NPDES permit

Notes SSO: site-specific objectives, n/a: not applicable, calc: threshold calculated based on other water quality parameters, WQO: water quality objective

The mathematical formula used to calculate the individual sub-indices is the same one as used by the province of Alberta, Canada (Appendix). However due to unique aspects in climate, pollutants of concern, urbanization, monitoring programs and environmental regulations that apply to the County of Ventura, compiling of the overall Index is tailored to Ventura County.

The Index formula is based on three aspects of water quality that relate to water quality objectives:

- Scope (F1): how many constituents do not meet objectives?
- Frequency (F2): how frequently do measurements not meet objectives?
- Magnitude (F3): by how much do measurements not meet objectives?

Most constituent concentrations are compared to the applicable water quality objectives, as explained in the Ventura Countywide Stormwater Quality Management Program 2011/2012 Water Quality Monitoring Report. For some pesticides water quality objectives have not been adopted by the State Water Resources Control Board. In those cases, the most stringent thresholds available from the State Water Resources Control Board's Water Quality Goals website were used (<u>http://waterboards.ca.gov/water issues/programs/water quality goals/search.shtml</u>). Note that the calculations for constituents without water quality objectives is slightly different, as explained below, in order to reflect the priorities of the State Water Resources Control Board.

Index values are calculated annually for the six variable groups for each watershed, and separately for dry and wet weather events. The latter is important because water quality and pollutants of concern are often different during dry and wet weather, as our Mediterranean climate hardly produces rain between May and September. The sub-indices are then averaged to produce an overall River Water Quality Index for dry and wet weather events. Multiple indices can also be averaged to obtain an index for all watersheds combined, or for dry and wet weather combined, as shown in Table 2 (for 2011/12).

Site	Event	Salts	Bacteria	Nutrients	Organics	Metals	Toxicity	Overall
								Index
ME-CC	Dry	59	100	100	97	100	n/a	91
	Wet	100	29	100	92	79	100	83
	Year	79	65	100	94	90	100	87
ME-SCR	Dry	100	100	100	100	94	n/a	99
	Wet	100	30	100	100	58	100	81
	Year	100	65	100	100	79	100	91
ME-VR	Dry	100	100	100	100	100	n/a	100
	Wet	100	29	87	100	100	100	86
	Year	100	65	94	100	100	100	93
All	Dry	86	100	100	99	100	n/a	97
	Wet	100	30	96	97	79	100	84
	Year	93	65	98	98	90	100	90

Table2. Calculation of sub-indices and overall Ventura County Water Quality Index (2011/12).

Rating System

Index results are reported as a number between 0 and 100, where 100 represents the best water quality, relative to objectives. The numbers are further ranked into five grades, each with a color code for graphing and mapping purposes (Table 3). The results for 2011/12 are shown in Table 4.

Index score	Grade	Interpretation
96 - 100	А	Excellent – Guidelines almost always met
81 – 95	В	Very Good
66 – 80	С	Fair
46 – 65	D	Marginal
0 – 45	F	Poor – All constituents exceed guidelines with high frequency

Table 3. Ventura County Water Quality Index scores and grades.

Site	Event	Salts	Bacteria	Nutrients	Organics	Metals	Toxicity	Overall
								Index
ME-CC	Dry	D	А	А	А	А	n/a	В
	Wet	А	F	А	В	С	А	В
	Year	С	D	А	В	В	А	В
ME-SCR	Dry	А	А	А	А	А	n/a	А
	Wet	А	F	А	А	D	А	В
	Year	А	D	А	А	С	А	В
ME-VR	Dry	А	А	А	А	А	n/a	А
	Wet	А	F	В	А	А	А	В
	Year	А	D	В	А	А	А	В
All	Dry	В	А	А	А	А	n/a	А
	Wet	А	F	А	А	С	А	В
	Year	В	D	А	А	В	A	В

Table 4. River water quality grades for Ventura County (2011/12).

What does the Index show?

Water quality has improved in Ventura County since 2003/04 (Fig. 1). The current water quality in the County of Ventura is generally good, with A and B grades at all locations. Index scores generally increase from ME-CC to ME-SCR to ME-VR, likely related to the degree of urbanization and agriculture in each watershed (Fig. 2). Water quality is usually better during dry weather events compared to storm events (Fig. 1, Fig. 2). Currently, salts are mostly responsible for

water quality impairments during dry weather, and bacteria and metals for impairments during wet weather.

Ventura County Water Quality Index (all locations)

Fig. 1. Water Quality Index trends for all locations combined.

Fig. 2. Water Quality Index trends for each receiving water station.

Trends of sub-indices are shown in Fig. 3. The sub-indices quickly indicate what constituent classes are associated with drops of the overall Index. For instance, a low Index score in 2004/05 during wet weather (Fig. 1) was caused by low sub-index scores for metals and toxicity.

Fig. 3. Sub-index trends with grades indicated by color codes

Appendix: Calculation of the Ventura County Water Quality Index

The formula used to calculate the Ventura County Water Quality Index is:

$$WQI = 100 - \left(\frac{\sqrt{F_1^2 + F_2^2 + F_3^2}}{1.732}\right)$$

Where:

F1 represents the number of water quality variables that do not meet objectives in at least one sample during the time period under consideration, relative to the total number of variables measured:

$$F_1 = \left(\frac{Number of failed constituents}{Total number of constituents}\right) \times 100$$

F2 represents the number of individual measurements that do not meet objectives (exceedances), relative to the total number of measurements made in all samples for the time period of interest:

$$F_2 = \left(\frac{Number \ of \ failed \ tests}{Total \ number \ of \ tests}\right) \times 100$$

F3 represents the magnitude of exceedances relative to the objectives. This is an asymptotic capping function that scales the normalized sum of the exceedance magnitudes (nse) to yield a range between 0 and 100:

$$F_3 = \left(\frac{nse}{0.01 \times nse + 0.01}\right)$$

The *nse* variable represents the amount by which water quality is exceeding the relevant threshold. This is calculated by summing the magnitudes of exceedances of individual tests, and dividing by total number of tests:

$$nse = \frac{\sum_{i=1}^{n} magnitude_{i}}{\# of \ tests}$$

For the case in which the test value must not exceed the objective:

$$magnitude_{i} = \left(\frac{Concentration_{i}}{Objective_{i}}\right) - 1$$

For the case in which the test value must not fall below the objective (only for dissolved oxygen and toxicity):

$$magnitude_{i} = \left(\frac{Objective_{i}}{Concentration_{i}}\right) - 1$$

Parameter calculation notes:

- *E. coli* concentrations are log-transformed before calculating F3. Log-transformation of *E. coli* concentrations is commonly applied in environmental statistics, to account for the log-normal concentrations distribution. Here, it ensures that *E. coli* exceedances do not low bias the index, relative to exceedances of other constituents.
- F3 is not included for constituents without water quality objectives. This ensures that no excessive weight is given to constituents for which (often multiple) environmentally relevant human health or ecotoxicity thresholds are available national or state recommended water quality criteria, but for which the State Water Resources Control Board has not formally adopted water quality objectives. Note that parameters F1 and F2 are still included, to ensure that exceedances of these important constituents are still reflected in the Ventura County Water Quality Index.