Designer:				
Project Proponent:				
Date:				
Project:				
Location:				
Type of Vegetation: (describe)				
Outflow Collection:	Grass Channel / Swale			
(Check type used or describe "Other")	Street Gutter			
	Storm Drain			
	Underdrain Used			
	Other			
Step 1: Calculate the design flow				
1-1. Enter Project area (acres), A _{project}				
	noff from a portion of the project area,	A _{project} =	acres	
enter the tributary area				
1-2. Enter impervious fraction, <i>Imp</i> (e.g. 60% = 0.60)		Imp =		
1-3. Determine pervious runoff coefficient using Table C-1, C_p		C _p =		
1-4. Calculate runoff coefficient,		C =		
$C = 0.95^* imp + C_p (1 - imp)$		C -		
1-5. Enter design rainfall intensity (in/hr), <i>i</i>		i =	in/hr	
1-6. Calculate water quality design flow (cfs),		SQDF =	cfs	
SQDF= CiA _{project}		5001 -		
Step 2: Calculate the minimum width				
2-1. Enter the stormwater quality design flow (cfs), SQDF		SQDF =	cfs	
2-2. Enter the minimum linear unit application rate (0.005 cfs/ft), $q_{a,min}$		Qa,min=	cfs/ft	
2-3. Calculate the minimum width of filter strip (ft), W_{min}		W _{min} =	ft	
Step 3: Calculate the design flow depth				
3-1. Enter filter strip longitudinal slope, s (ft/ft)		s =	ft/ft	
3-2. Enter Manning roughness coefficient (0.25-0.30), n _{wq}		n _{wq} =		

Sizing Worksheet - PT-4 Vegetated Filter Strip

3-3. Enter width of impervious surface contributing area (perpendicular to flow), W (ft)	W =	ft		
Step 3: Calculate the design flow depth				
3-4. Calculate average depth of water using Manning equation (inches), $d_f = 12^* [SQDF^*n_{wq}/1.49W_{trib}s^{0.5}]^{0.6}$	d _f =	inches		
3-5. If $d_f > 1$ " (0.083 ft), go back step 3-1 and decrease the slope				
3-6. If the slope cannot be changed due to construction constraints, go to step 3-3 and increase the width perpendicular to flow.				
Step 4: Calculate the design velocity				
4-1. Enter depth of water (ft), $d_{f,ft}=d_f/12$	d _f =	ft		
4-2. Enter width of strip (ft), W	W =	ft		
4-3. Calculate design flow velocity (ft/s), $V_{wq} = SQDF/(d_{f,ft}W)$	V _{wq} =	ft/s		
4-4. If the $V_{wq} > 1$ ft/s, go back to step 3-1 and decrease the slope.				
Step 5: Calculate the length of the filter strip				
5-1. Enter desired residence time (minimum 7 minutes), <i>t</i>	t =	min		
5-2. Enter design flow velocity (ft/s), V _{wq}	V _{wq} =	ft/s		
5-3. Calculate length of the filter strip (ft), $L = 60tV_{wq}$	L =	ft		
5-4. If $L < 4$ ft, go to step 3-1 and increase the slope				