Designer:			
Project Proponent:			
Date:			
Project:			
Location:			
The design of the permeable pavement shall not receive runoff from areas, such as an island planter, shall be designed so that the soils of	n landscape area are contained ins	as. Incidental landscape side the planter.	
Pretreatment Feature (if applicable):			
Outflow Collection:			
Step 1: Determine water quality design volume			
1-1. Enter Project area (acres), A _{project}			
If this BMP captures runoff from a portion of the project area, enter the tributary area	A _{project} =	acres	
1-2. Enter Project impervious fraction, <i>Imp</i> (for the permeable pavement BMP, this fraction is 100% as no pervious areas should drain to it and risk clogging)	Imp=		
1-3. Determine pervious runoff coefficient using <u>Table C-1</u> , C_p	C _p =		
1-4. Calculate runoff coefficient,	<u> </u>		
$C = 0.95^* imp + C_p (1 - imp)$	C =		
1-5. Enter design rainfall depth of the storm (in), <i>P_i</i>	P _i =	in	
1-6. Calculate rainfall depth (ft), $P = P_i/12$	P =	ft	
1-7. Calculate water quality design volume (ft ³),	50DV-	f1 3	
SQDV=43560×C*P*A _{project}	5007-	it it	
Step 2: Determine the design percolation rate			
2-1. Enter measured soil infiltration rate (0.3 in/hr minimum), P _{measured}	P _{measured} =	in/hr	
2-2. Determine percolation rate correction factor, S_A based on suitability assessment (see Section 6 INF-5)	S _A =		
2-3. Determine percolation rate correction factor, S_B based on design (see Section 6 INF-5)	S _B =		
2-4. Calculate combined safety factor, $S = S_A \times S_b$	S =		
2-5. Calculate the design percolation rate (in/hr),	D in/hr		
P _{design} = P _{measured} /S	r design =	in/nr	
Step 3: Determine the Gravel Drainage Layer Depth			

Sizing Worksheet - INF-5 Permeable Pavers

3-1. Enter drawdown time (hours, 72 hrs max.), t	t =	hours	
3-2. Calculate max. depth of runoff (ft) that can be infiltrated within the t, $d_{max}=P_{design}t/12$	d _{max} =	ft	
3-3. Enter the gravel drainage layer porosity, <i>n</i> (typically 32% or 0.32 for gravel)	n =		
3-4. Select the gravel drainage layer depth (ft) such that $d_{max} \ge n \times l$	1=	ft	
Step 4: Determine infiltrating surface area			
4-1. Enter gravel drainage layer porosity, n	n =		
4-2. Enter depth of gravel drainage layer (ft), /	=	ft	
4-3. Enter the time to fill the gravel drainage layer with water (Use 2 hours for most designs), <i>T</i>	T=	hrs	
4-4. Calculate infiltrating surface area (ft ³):			
A=SQDV/((TP _{design} /12)+nI)	A =	ft²	
Check that the maximum ratio of impervious area (Aproject impervious) to permeable pavement (A) is no greater than 2:1 to minimize sediment loading.			
Step 5: Provide conveyance capacity for clogging			
5-1. The permeable pavement must have an emergency overflow for storm events greater than the design			

and in the event the permeable pavement becomes clogged.