Designer:		
Project Proponent:		
Date:		
Project:		
Location:		
Type of Vegetation:		
Pretreatment Feature:		
Outflow Collection:		
Step 1: Determine water quality design volume		
 1-1. Enter Project area (acres), A_{project} If this BMP captures runoff from a portion of the project area, enter the tributary area 	A _{project} =	acres
1-2. Enter Project impervious fraction, <i>Imp</i> (e.g. 60% = 0.60)	Imp=	
1-3. Determine pervious runoff coefficient using Table C-1, C_p	Cp =	
1-4. Calculate runoff coefficient, $C = 0.95*imp + C_p (1-imp)$	C =	
1-5. Enter design rainfall depth of the storm (in), <i>P_i</i>	P _i =	in
1-6. Calculate rainfall depth (ft), P = P _i /12	P =	ft
1-7. Calculate water quality design volume (ft ³), SQDV=43560×C*P*A _{project}	SQDV=	ft³
Step 2: Determine the design percolation rate		
2-1. Enter measured soil infiltration rate (in/hr) (0.3 in/hr minimum), P _{measured}	P _{measured} =	in/hr
2-2. Determine percolation rate correction factor, S _A based on suitability assessment (see Section 6 INF-3)	S _A =	
2-3. Determine percolation rate correction factor, S_{B} based on design (see Section 6 INF-3)	S _B =	
2-4. Calculate combined safety factor, $S = S_A \times S_b$	S =	
2-5. Calculate the design percolation rate (in/hr), P _{design} = P _{measured} /S	P _{design} =	in/hr

Sizing Worksheet - INF-3 Bioretention

Step 3: Calculate Bioretention Infiltrating surface area		
3-1. Enter water quality design volume (ft ³), SQDV	SQDV =	ft ³
3-2. Enter design percolation rate (in/hr), P _{design}	P _{design} =	in/hr
3.3 Enter the required drain time (48 hours), $t_{ponding}$	tponding =	hours
3-3. Calculate the maximum depth of surface ponding that can be infiltrated within the required drain time (ft): $d_{max} = (P_{design} \times t_{ponding})/12$	d _{max} =	ft
3-4. Select surface ponding depth (ft), d_p , such that $d_p \leq d_{max}$	d _p =	ft
3-5. Select thickness of amended media (ft,2 feet minimum, 3 preferred), <i>I_{media}</i>	I _{media} =	ft
3-6. Enter porosity of amended media (roughly 25% or 0.25 ft/ft), <i>n_{media}</i>	N _{media} =	ft/ft
3-7. Select thickness of optional gravel layer (ft), I_{gravel}	Igravel =	ft
3-8. Enter porosity of gravel (roughly 30% or 0.3 ft/ft), ngravel	n _{gravel} =	ft/ft
3-9. Calculate the total effective storage depth of bioretention facility (ft):	d _{effective} =	ft
$d_{effective} \leq (d_p + n_{media} l_{media} + n_{gravel} l_{gravel})$		
3-10. Check that the entire effective depth infiltrates in required drainage time, 72 hours:		
$t_{total} = (d_{effective}/P_{design}) \times 12$		
If t_{total} > 72 hours, reduce surface ponding depth and/or amended media thickness and/or gravel thickness and return to 3-4.	t _{total} =	hours
If $t_{total} \leq$ 72 hours, proceed to 3-11.		
3-11. Calculate the required infiltrating surface area (ft^2): $A_{req} = SQDV/d_{effective}$	A _{req} =	ft ²
Step 4: Calculate Bioretention Area Total Footprint		
4-1. Calculate total footprint required by including a buffer for side slopes and freeboard (ft^2) [A _{req} is measured at the as the filter bottom area (toe of side slopes)], A _{tot}	A _{tot} =	ft²
Step 5: Provide conveyance capacity for filter clogging		
5-1. The infiltration facility should be placed off-line, but an eme event the filter becomes clogged. Design emergency overflow i Ventura County Flood Control District or local jurisdiction.		-