Sizing Worksheet - HM-1 Dry Extended Detention Basin

Designer:			
Project Proponent:			
Date:			
Project:			
Location:			
Type of Vegetation:	Nati	ve Grasses	
	Irrig	ated Turf	
	Oth	er	
Outflow Collection:			
Outlet Type (check one	Sing	le Orifice	
	Mul	ti-orifice Plate	
	Perf	orated Pipe	
	Oth	er	
Depth of water above bottom orifice	Dep	th = feet	
Single Orifice Outlet			
1)Total Area	A = .	square inches	
2) Diameter or W x L	D =	inches	
Multiple Orifice Outlet			
1) Area per row of perforations	A = .	A = square inches	
2) Perforation Diameter (2 inches max.)	D =	D =	
3) No. of Perforations (columns) per Row	Perf	Perforations =	
4) No. of Rows (4 inch spacing)	Row	Rows =	
5) Total Orifice Area	Area	a = square inches	
(Area per row) x (Number of Rows)			
Step 1: Determine water quality design volume			
1-1. Enter Project area (acres), A _{project}			
If this BMP captures runoff from a portion of the project area,		A _{project} =	acres
enter the tributary area			
1-2. Enter Project impervious fraction, <i>Imp</i> (e.g. 60% = 0.60)		Imp=	
1-3. Determine pervious runoff coefficient using <u>Table C-1</u> , C_p		C _p =	

1-4. Calculate runoff coefficient, $C = 0.95*imp + C_p (1-imp)$	C =	
1-5. Enter design rainfall depth of the storm (in), P_i	P _i =	in
	P =	ft
1-6. Calculate rainfall depth (ft), $P = P_i/12$	P =	π
1-7. Calculate water quality design volume (ft³),	SQDV =	ft³
SQDV=43560•C*P*A _{project}		
Step 2: Calculate the volume of the active basin		
2-1. Calculate basin active volume (includes water quality design volume + sediment storage volume) (ft ³), V_a = 1.20 × SQDV	V _a =	ft³
Step 3: Determine Detention Basin Location and Preliminary G	eometry Based on Si	te Constraints
3-1. Based on site constraints, determine the basin geometry are elevation-storage relationship for the basin. For this simple example (forebay) and cell 2.	=	· -
3-2. Enter the total surface area of the basin footprint based on site constraints (ft^2), A_{tot}	A _{tot} =	ft²
3-3. Enter the length of the basin footprint based on site constraints (ft), L_{tot}	L _{tot} =	ft
3-4. Calculate the width of the basin footprint (L:W = 1.5:1 min) (ft), $W_{tot} = A_{tot} / L_{tot}$	W _{tot} =	ft
3-5. Enter interior side slope as length per unit height (H:V, min = 3), Z	Z =	
3-6. Enter desired freeboard depth (ft), d _{fb} (min: 2 ft on-line; 1 ft offline)	d _{fb} =	ft
3-7. Calculate the length of the active volume surface area including the internal berm but excluding freeboard, $L_{av-tot} = L_{tot} - 2Zd_{fb}$	L _{av-tot} =	ft
3-8. Calculate the width of the active volume surface area including the internal berm but excluding freeboard, $W_{av-tot} = W_{tot} - 2Zd_{fb}$	W _{av-tot} =	ft
3-9. Calculate the total active volume surface area including the internal berm and excluding freeboard, $A_{av\text{-}tot} = L_{av\text{-}tot} \times W_{av\text{-}tot}$	A _{av-tot} =	ft²
3-10. Enter the width of the internal berm (6 ft min), $W_{\it berm}$	W _{berm} =	ft
3-11. Enter the length of the internal berm (ft), $L_{berm} = W_{av-tot}$	L _{berm} =	ft

2.42 Calculate the owns of the bours (ft ²)		
3-12. Calculate the area of the berm (ft ²), $A_{berm} = W_{berm} \times L_{berm}$	A _{berm} =	ft²
3-13. Calculate the surface area excluding the internal berm and freeboard (ft ²), $A_{av} = A_{av-tot} - A_{berm}$	A _{av} =	ft²
Step 4: Determine Dimensions of forebay		
4-1. Enter the percentage of V_a in forebay (5-15% required), $\%V_1$	%V ₁ =	%
4-2. Calculate the active volume of forebay, $V_1 = V_a \bullet \% V_1$	V ₁ =	ft³
4-3. Enter a desired average depth for the active volume of forebay, d_1	d ₁ =	ft
4-4. Calculate the surface area for the active volume of forebay, $A_1 = V_1/d_1$	A ₁ =	ft²
4-5. Enter the width of forebay, $W_1 = W_{av-tot} = L_{berm}$	W ₁ =	ft
4-6. Calculate the length of forebay (<u>Note:</u> inlet and outlet should be configured to maximize the residence time), $L_1 = A_1 / W1$	L ₁ =	ft
Step 5: Determine Dimensions of Cell 2		
5-1. Calculate the active volume of Cell 2, $V_2 = V_a - V_1$	V ₂ =	ft³
5-2. Calculate the surface area of the active volume of Cell 2, $A_2 = A_{av} - A_1$	A ₂ =	ft²
5-3. Calculate the average depth for the active volume of Cell 2, $d_2 = V_2/A_2$	d ₂ =	ft
5-4. Enter the width of Cell 2, $W_2 = W_1 = W_{av-tot} = L_{berm}$	W ₂ =	ft
5-5. Calculate the length of Cell 2, $L_2 = A_2/W_2$	L ₂ =	ft
3 3. Calculate the length of cen 2, 22 - 712/ W2		
5-6. Calculate the width of Cell 2 at half of d ₂ , $W_{mid2} = W_2 - Zd_2$	W _{mid2} =	ft
5-6. Calculate the width of Cell 2 at half of d ₂ ,	W _{mid2} = L _{mid2} =	ft ft

Step 6: Ensure Design Requirements and Site Constraints are Achieved

6-1. Check design requirements and site constraints. Modify design geometry until requirements are met. If the chosen site for the basin is inadequate to meet the design requirements, choose a new location or alternative treatment BMP.

Step 7: Size Outlet Structure

7-1. The total drawdown time for the basin should be 36-48 hours. The outlet structure shall be designed to release the bottom 50% of the detention volume (half-full to empty) over 24-32 hours, and the top half (full to half-full) in 12-16 hours. A primary overflow should be sized to pass the peak flow rate from the developed capital design storm.

Step 8: Determine Emergency Spillway Requirements

8-1. For online basins, an emergency overflow spillway should be sized to pass flows greater than the design peak runoff discharge rate for the 100-yr, 24-hr storm in order to prevent overtopping of the walls or berms in the event that a blockage of the riser occurs. For offline basins, an emergency spillway or riser should be sized to pass the 100-yr, 24-hr post-development peak storm water runoff discharge rate directly to the downstream conveyance system or another acceptable discharge point. For sites where the emergency spillway discharges to a steep slope, an emergency overflow riser, in addition to the spillway should be provided.