
Ventura County Technical Guidance Manual for Stormwater Quality Control Measures

2011 Manual Update Workshop

Training Schedule

- 1:00 2:00 PM Redevelopment Development Scenario
- 2:00 2:10 PM Break
- 2:10 2:55 PM Mixed Use & Residential Development Scenarios
- 2:55 3:20 PM Q & A
- 3:20 3:30 PM Summary and Closing

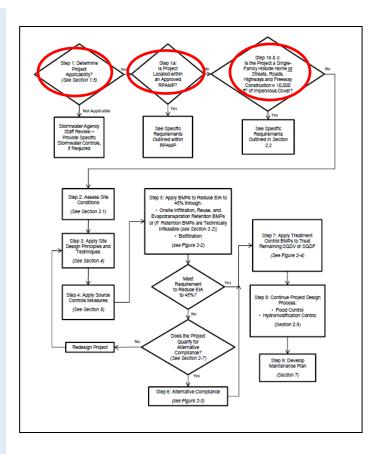
Afternoon Training: Case Studies

- Scenario 1: Commercial Development Achieving EIA
- Scenario 2: Commercial Development Implementing Alternative Compliance
- Scenario 3: Single-Family Residential Development
- Training Summary and Closing

3

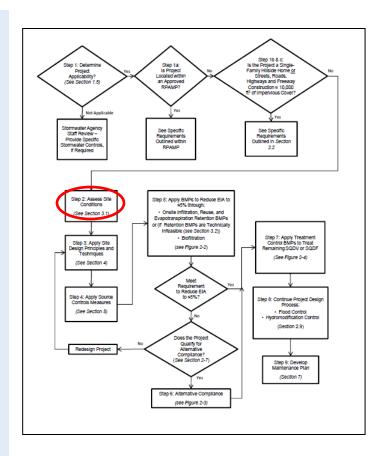
Scenario 1: Commercial

- Project Information:
 - Redevelopment of a former Kmart center in City of Ventura
 - Highly urbanized area along South Victoria Avenue
 - Site is covered by building roof and parking lot, with some vegetation (curbed off trees) within the main parking lot.
 - 12.2 Acres
 - 95% Impervious


Kmart Site (Image from Google Earth Pro[™], June 2011)

Step 1: Project Applicability

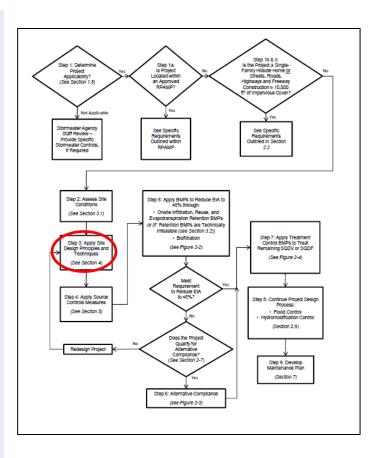
- Step 1: Project Applicability
 - Project is Subject to Requirements
 - Project not located within approved RPAMP
 - Project does not require specifications indicated for Step 1b & 1c



5

Step 2: Assess Site Conditions

- Collect Site Information (Section 3.1):
 - Topography
 - Slopes < 15%
 - No Geological/ Geotechnical Hazards
 - Ventura Soil Type 4
 - Seasonal High Groundwater is greater than 10 feet below ground surface (BGS)
 - No nearby groundwater wells
 - No pollutant plumes/ not a brownfield site



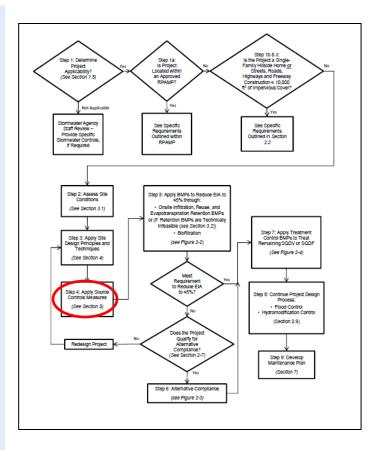
6

Step 3: Apply Site Design Principles and Techniques

- Site Design Principles (Section 4):
 - Site Planning
 - Conservation of Natural Areas
 - Minimizing Land Disturbance
 - Minimizing Impervious Cover
 - Applying LID at Various Scales
 - Implementing Integrated Water Resource Management Practices (IWRM)

Step 3: Apply Site Design Principles and Techniques

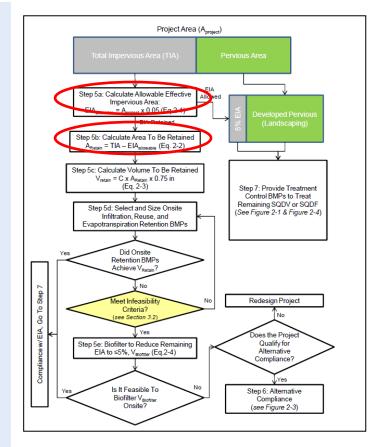
Design Principle	Applicable	Not Applicable	Notes
Site Planning (4.2)		Х	Redevelopment Site
Conservation of Natural Areas (4.3)		х	Redevelopment Site
Minimizing Land Disturbance (4.4)		х	Redevelopment Site
Minimizing Impervious Cover (4.5)	Х		Pervious areas and BMPs provide minimization of impervious areas
Applying LID at Various Scales (4.6)		х	Redevelopment Site
Implementing IWRM (4.7)	Х		Use of LID BMPs promotes IWRM



8

Step 4: Apply Source Controls

Refer to Section 5 of TGM

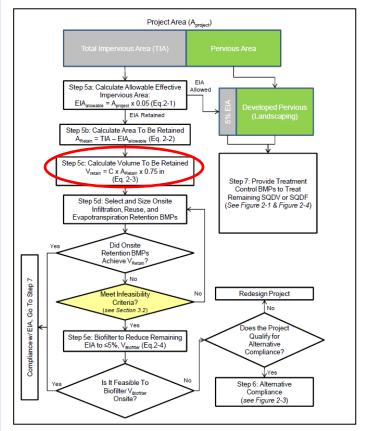


Step 4: Apply Source Controls

Source Control	Applicable	Not Applicable	Notes
S-1: Storm Drain Message/Signage	х		Storm drains expected on-site
S-2: Outdoor Material Storage Area Design		х	No outdoor material storage
S-3: Outdoor Trash Storage Area Design	х		Outdoor trash area on-site should be properly contained
S-4: Outdoor Loading/ Unloading Dock Area	х		Outdoor loading dock on-site
S-5: Outdoor Repair/ Maintenance Bay Design		х	No outdoor repair/ maintenance bay on-site
S-6: Outdoor Vehicle Washing Area Design		х	No outdoor vehicle washing allowed on-site
S-7: Fueling Area Design		Х	No vehicle fueling area on-site
S-8: Proof of Control Measure Maintenance	х		Required for all sites

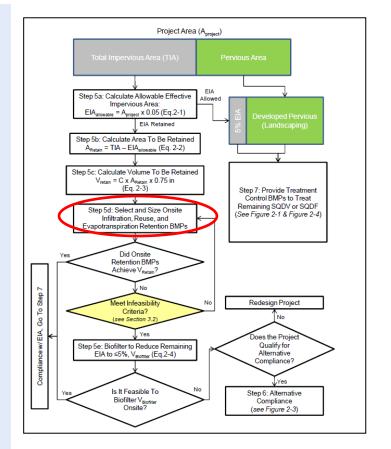
Step 5: Apply BMPs to Reduce EIA to $\leq 5\%$

- Step 5a: Calculate Allowable Effective Impervious Area
 - EIA_{allowable} = (12.2 ac)*(0.05) = 0.6 acres
- Step 5b: Calculate Area to be retained
 - A_{retain} = (12.2 ac* 0.95) 0.6 ac = 11 acres



Step 5: Apply BMPs to Reduce EIA to $\leq 5\%$

- Step 5c: Calculate Volume to be Retained
 - $-V_{retain} = 0.95*11 \text{ ac}^* (0.75 \text{ in}/12)$ (in/ft)
 - V_{retain}= 0.65 ac-ft



Step 5: Apply BMPs to Reduce EIA to $\leq 5\%$

- Step 5d: Select and Size On-site Infiltration, Evapotranspiration, and Harvest and Reuse BMPs
 - Develop Stormwater
 Management Plan Options
 - Infiltration
 - Harvest and Reuse
 - Evapotranspiration

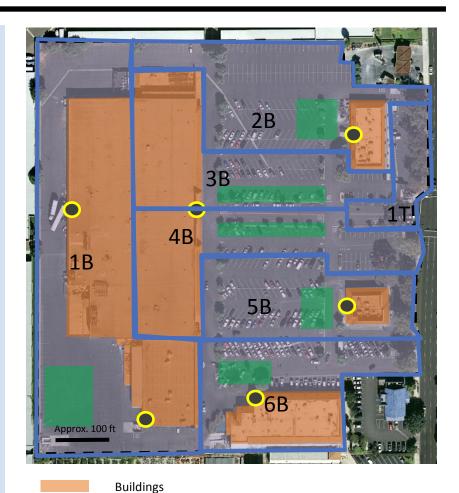
Step 5d: Selecting and Sizing BMPs Infiltration BMPs

ВМР	Recommended	Possible	Not Recommended	Notes
INF-1: Infiltration Basin			x	Infiltration basin generally not practical for parking lot site
INF-2: Infiltration Trench		х		Infiltration trench could be applied with biofiltration pretreatment
INF-3: Bioretention	x			Bioretention can be applied to parking lot land uses and can treat smaller or larger tributary areas
INF-4: Drywell		х		Drywells could be installed near roof drains with adequate pretreatment
INF-5: Permeable Pavement	x			Permeable pavement is a good option for parking stalls and other low traffic areas
INF-6: Proprietary Infiltration		X		Underground vaults could be installed below grade to capture and infiltrate runoff

consultants

Step 5d: Selecting and Sizing BMPs Infiltration BMP Options

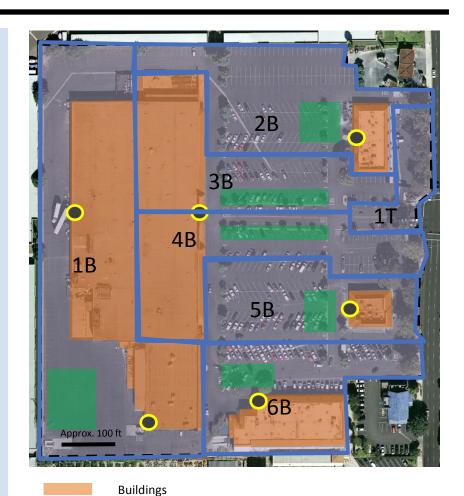
- Infiltration Option 1: Distributed Bioretention
- Infiltration Option 2:
 Permeable Pavement


Asphalt

Bioretention Areas

- Option 1: Distributed Bioretention
 - Determine BMP drainage areas
 - Sub-areas 1B 6B: Treated by bioretention (INF-3)
 - Sub-area 1T: Grades up from street
 - Difficult to find space for bioretention
 - Treatment Control
 Measure will be used
 (Step 7)
 - This area will count as Project EIA

Asphalt

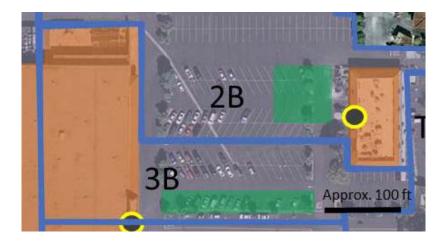

Roof Drain

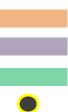
Bioretention Areas

Geosyntec^D 16

- Also consider drainage infrastructure and pretreatment needed
 - Conveyance system
 - Include pretreatment BMPs
 - Catch Basin Inserts Recommended (PT-2)
 - Could also use Hydrodynamic Separators (PT-1)
- Next Step: Size BMPs for tributary area

Asphalt


Roof Drain

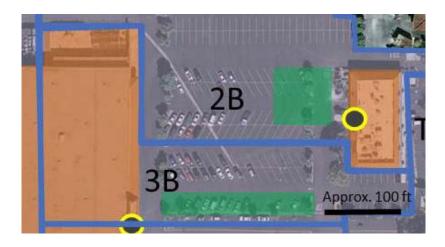

Bioretention Areas

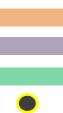
Geosyntec^D 17

- Sizing Example: Subarea 3B
 - Bioretention (INF-3)
- Drainage area:
 - ~1.3 Acre = 56,600 ft²
 - 95% Impervious
 - LUs: Building roof, parking lot area, and some landscaping
- Use INF-3 sizing worksheet (Section E.3)

Buildings Asphalt Bioretention Areas Roof Drain

Step 1: Determine water quality design volume			
1-1. Enter Project area (acres), A _{project}	Aproject =	acres	
 1-2. Enter the maximum allowable percent of the Project area that may be effective impervious area (%) (refer to permit), ranges from 5-30%, %allowable 	% _{allowable} =	%	
1-3. Determine the maximum allowable effective impervious area (acres), EIA _{allowable} = (A _{project})*(% _{allowable})	EIA _{allowable} =	acres	
1-4. Enter Project impervious fraction, Imp (e.g. 60% = 0.60)	Imp=		
1-5. Determine the Project Total Impervious area (acres), TIA=A _{project} *Imp	TIA=	acres	
1-6. Determine the total area from which runoff must be retained (acres), A _{retain} =TIA-EIA _{allowable}	Area = 56,600 ft ²		
1-7. Determine pervious runoff coefficient using <u>Table E-1</u> , C _p	C _p =	0.05	
1-8. Calculate runoff coefficient, $C = 0.95^*imp + C_p (1-imp)$	C = 0.91		
1-9. Enter design rainfall depth of the storm (in), <i>P</i> _i	P _i =	0.75 in	
1-10. Calculate rainfall depth (ft), $P = P_i/12$	P =	0.0625 ft	
1-11. Calculate water quality design volume (ft³), SQDV=43560×C*P*A _{retain}	SQDV=	3,200 ft ³	


Note that Area here is not 100% impervious; BMP must be sized for runoff from impervious and pervious areas on-site



Geosyntec^D 19

Step 5d: Infiltration Option 1 Determining Infiltration Rate

- From Ventura County
 Soils Map: Site Soil Type
 SxC (Sorrento Silty Clay
 Loam)
- NRCS Web Soil Data:
 - Hydraulic Conductivity ranges from 1.4 – 4.0 in/hr
 - <u>http://websoilsurvey.nrcs.</u> <u>usda.gov/app/HomePage.</u> <u>htm</u>

Buildings Asphalt Bioretention Areas Roof Drain

Step 5d: Infiltration Option 1 Determining Infiltration Rate

Table 6-9: Infiltration Facility Safety Factor Determination Worksheet

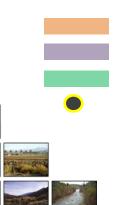
			Assigned Weight	Factor Value	Product (p)
Fac	ctor Category	Factor Description	(w)	(v)	p = w x v
		Soil assessment methods	0.25	3	0.75
		Predominant soil texture	0.25	0.91	0.23
А	Suitability	Site soil variability	0.25	1	0.25
~	Assessment	Depth to groundwater / impervious layer	0.25	2	0.5
		Suitability Asse	essment Safety Facto	or, $S_A = \Sigma p$	1.75
		Tributary area size	0.25	1	0.25
		Level of pre-treatment/ expected sediment loads	0.25	3	0.75
В	B Design	Redundancy	0.25	2	0.5
		Compaction during construction	0.25	2	0.5
	or, $S_B = \Sigma p$	2			
	•				
	Combined Safety Factor = S _A x S _B 3.5				
Note:	The minimum co	mbined adjustment factor shall	not be less than 2.0 a	nd the maxir	num combined

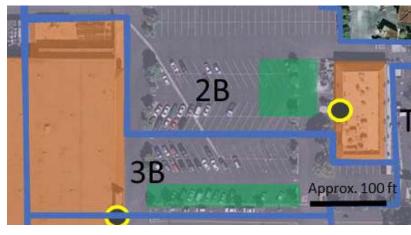
Note: The minimum combined adjustment factor shall not be less than 2.0 and the maximum combined adjustment factor shall not exceed 9.

Step 5d: Infiltration Option 1 Determining Infiltration Rate

	1.4 in/hr 1.75
S _A =	1.75
S _B =	2
S =	3.5
$\mathbf{P}_{design} =$	0.4 in/hr
_	S =

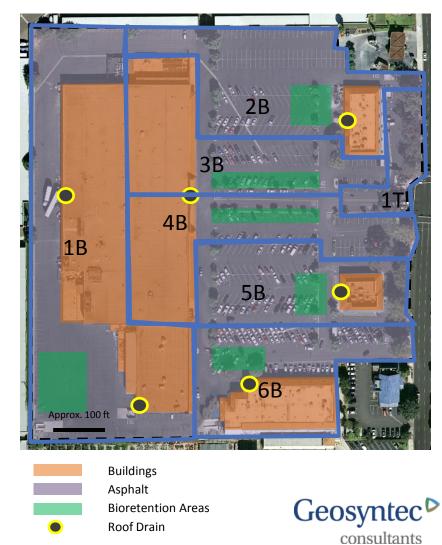
Next Step: Calculate required infiltrating area


-1. Enter water quality design volume (ft³), SQDV	SQDV =	3,200 ft ³
-2. Enter design percolation rate (in/hr), P _{design}	$\mathbf{P}_{\mathrm{design}} =$	0.4 in/hr
.3 Enter the required drain time (48 hours),	$t_{\rm ponding}$ =	48 hours
-3. Calculate the maximum depth of surface onding that can be infiltrated within the required train time (ft): $t_{max} = (P_{design} \times t_{ponding})/12$	d _{max} =	1.6 ft
-4. Select surface ponding depth (ft), d_p , such that $d_p \leq d_{max}$	$d_p =$	1.5 ft
-5. Select thickness of amended media (ft,2 feet ninimum, 3 preferred), <i>l_{media}</i>	$l_{\rm media} =$	3 ft
-6. Enter porosity of amended media (roughly 5% or 0.25 ft/ft), n_{media}	n _{media} =	0.25
-7. Select thickness of optional gravel layer (ft), ravel	$l_{\rm gravel} =$	N/A
-8. Enter porosity of gravel (roughly 30% or 0.3 t/ft), n _{gravel}	n _{gravel} =	N/A
9. Calculate the total effective storage depth of oretention facility (ft): $d_{ffective} \leq (d_p + n_{media}l_{media} + n_{gravel}l_{gravel})$	$d_{\rm effective}$ =	2.25 ft

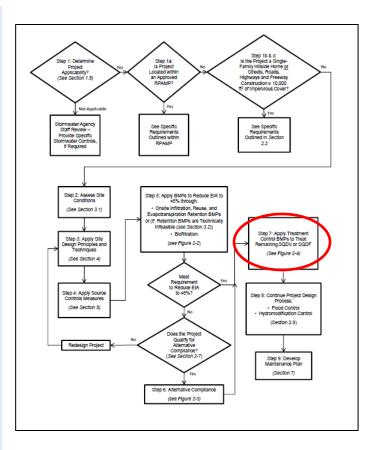


Step 5d: Infiltration Option 1 Calculating Infiltrating Area

3-10. Check that the entire effective depth infiltrates in required drainage time, 96 hours:	
$t_{total} = (d_{effective}/P_{design}) \times 12$ If $t_{total} > 96$ hours, reduce surface ponding depth	t _{total} = 54 hours
and/or amended media thickness and/or gravel thickness and return to 3-4. If t _{total} ≤ 96 hours, proceed to 3-11.	
3-11. Calculate the required infiltrating surface area (ft ²):	$A_{req} = 1,420 \text{ ft}^2$
$A_{req} = SQDV/d_{effective}$	



Buildings Asphalt Bioretention Areas Roof Drain


Geosyntec^D 24

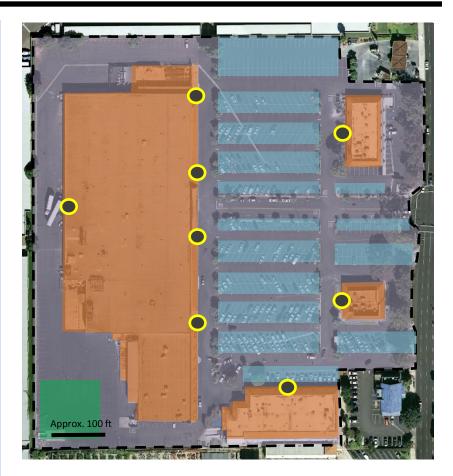
- Repeat sizing procedure for sub-areas 1B, 2B, 4B, 5B, and 6B
- Ensure that $(SQDV_{1B} + SQDV_{2B} + SQDV_{3B} + SQDV_{4B} + SQDV_{5B} + SQDV_{6B}) \ge V_{retain}$

Step 7: Apply Treatment Control BMPs to Treat Remaining SQDV

- Continue to Step 7 to size treatment control measure for 1T – remaining tributary area runoff volume
 - Selection of appropriate TCM (Section 3.3 of TGM)
 - Determine Primary POCs
 - Sediment, Oil & Grease, and Trash
 - Discharge to an Impaired Waterbody?
 - EPA MyWATERS Mapper (303(d) listed receiving waters)
 - SCR Reach 1 Impaired for Toxicity

Step 7: Apply Treatment Control BMPs to Treat Remaining SQDV

- Select TCM that addresses pollutant causing impairment
 - Table 3-4 of TGM (a portion is shown ->)
 - Toxicity not listed
 - Surrogates: Metals,
 Pesticides
 - Cartridge Media Filter (TCM-5) acceptable for these POCs

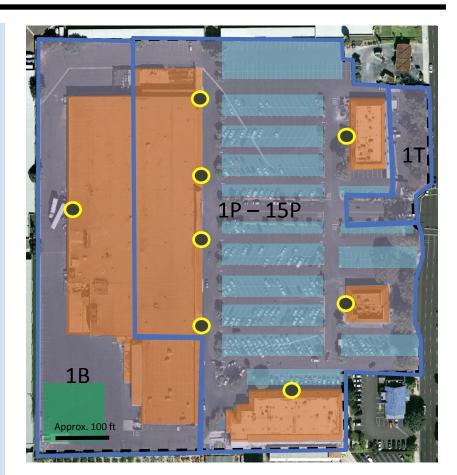

Class of Pollutant	Recommended BMPs (in Order of Performance)		
Sediment	Retention BMPs (Infiltration, Rainwater Harvesting, and Evapotranspiration BMPs) Any of the following BMPs(equivalent performance): a. Biofiltration BMPs b. Wet Detention Basin c. Constructed Wetland d. Sand Filter/Cartridge Media Filter 3. Dry Extended Detention Basin		
Metals / Metalloids	Retention BMPs (Infiltration, Rainwater Harvesting, and Evapotranspiration BMPs) Any of the following BMPs (equivalent performance): a. Constructed Wetland b. Biofiltration BMPs c. Wet Detention Basin d. Sand Filter/Cartridge Media Filter 3. Dry Extended Detention Basin		
Nutrients ¹	 Retention BMPs (Infiltration, Rainwater Harvesting, and Evapotranspiration BMPs) Any of the following BMPs (equivalent performance): Bioinfiltration Wet Detention Basin Constructed Wetland Any of the following BMPs (equivalent performance): Biofiltration BMPs Any of the following BMPs (equivalent performance): Biofiltration BMPs Any of the following BMPs (equivalent performance):		
Pesticides ²	 Source controls, erosion controls Retention BMPs (Infiltration, Rainwater Harvesting, and Evapotranspiration BMPs) Any of the following BMPs (equivalent performance): Biofiltration BMPs Wet Detention Basin Constructed Wetland Sand Filter/Cartridge Media Filter 		

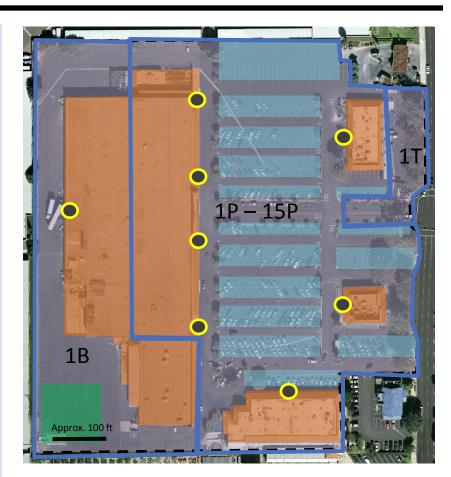
S

27

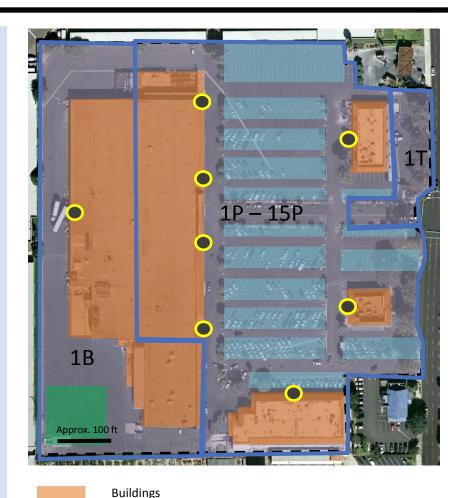
Step 5d: Selecting and Sizing BMPs Infiltration BMP Options

- Infiltration Option 1: Distributed Bioretention
- Infiltration Option 2:
 Permeable Pavement




- Parking stalls constructed with permeable pavement
 - Sub-areas 1P-15P (not individually delineated)
 - Lanes sheet flow into stalls or piped via catch basins
 - Roof runoff piped to porous pavement
 - Pretreatment should be implemented:
 - Roof runoff => ex: planter boxes (BIO-2)
 - Piped lane runoff => catch basin inserts (PT-2)

- Loading dock area drains to bioretention
 - Permeable pavement not recommended for high traffic load area
 - Drainage sub-area 1B
- Entry road treated by cartridge media filter
 - Space constraints
 - Drainage sub-area 1T (Project EIA)



- Size permeable pavement for drainage areas P1- P15
- Size bioretention for area B1
- Ensure that:
 - $(SQDV_{1P} + ... + SQDV_{15P} + SQDV_{1B}) \ge V_{retain}$
- Continue to Step 7 to size treatment control measure for 1T

Asphalt

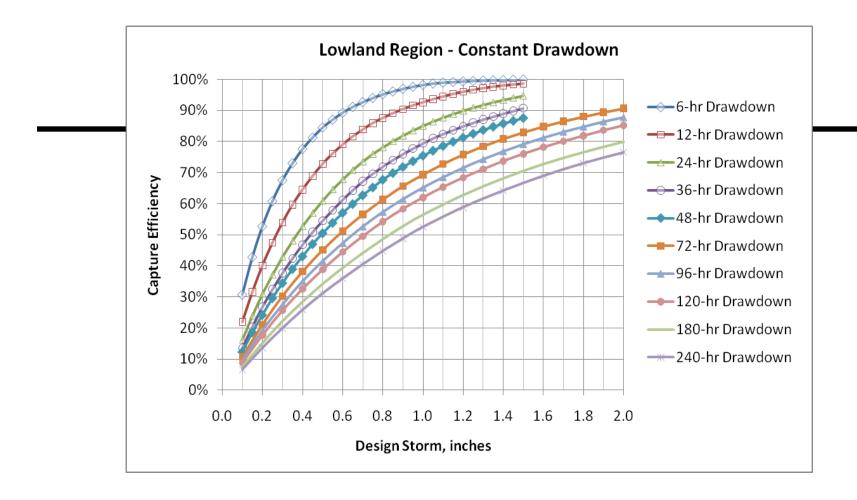
Roof Drain

Permeable Pavement

Step 5d: Selecting and Sizing BMPs Rainwater Harvesting and Evapotranspiration BMPs

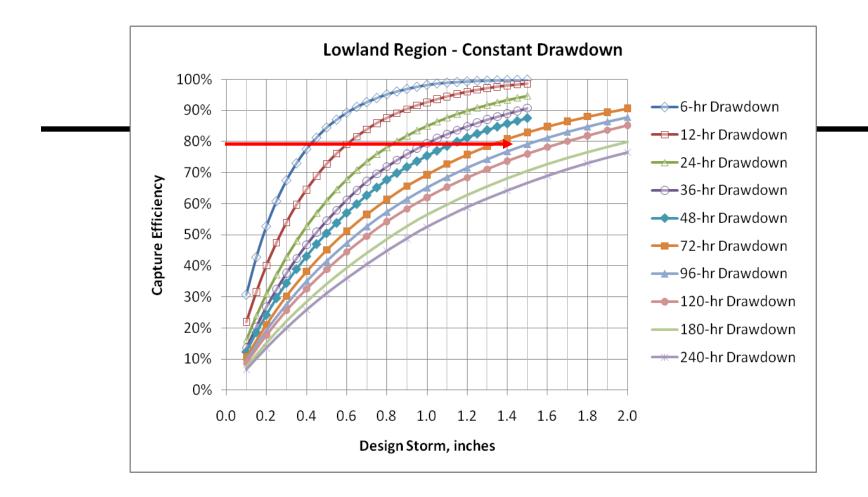
BMP	Recommended	Possible	Not Recommended	Notes
RWH-1: Rainwater Harvesting		х		Possible to capture runoff from roof and use for non-potable water demand <i>IF</i> there is enough demand
ET-1: Green Roof		х		Possible to install green roof above Kmart facility
ET-2: Hydrologic Source Controls		Х		Possible to implement some hydrologic source controls

Step 5d: Selecting and Sizing BMPs Rainwater Harvesting and Evapotranspiration BMPs

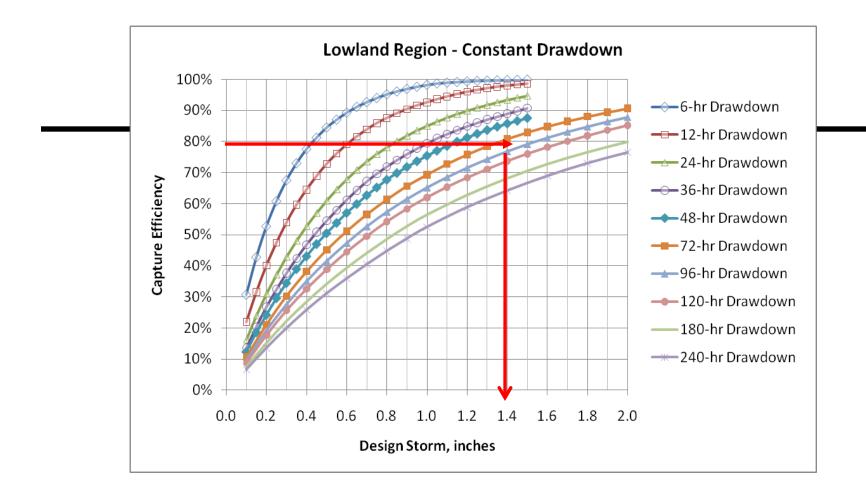

- Rainwater Harvesting
 Option
- Evapotranspiration Option: Green Roof

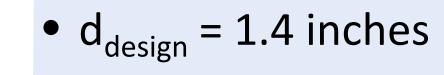
Determining if RWH is required (See RWH-1, Sizing Criteria): Calculate your rainwater harvesting demand volume (RWHDV)

> Buildings Asphalt



- RWHDV = $C^*(d_{design}/12)^*A_{retain}$
- Determine your d_{design}
 - d_{design} used for feasibility purposes only


34



 d_{design} is the design storm (inches) which achieves 80% drawdown in 72 hours

Step 5d: Selecting and Sizing BMPs Rainwater Harvesting and Evapotranspiration BMPs

- RWHDV = 0.95*11 ac*[1.4 in/12 (in/ft)]
 RWHDV = 1.2 ac-ft
- Demand = [RWHDV/(72 hours /24 (hours/day))] * (325,851 (gal/ac-ft))

– Demand = 132,000 gal

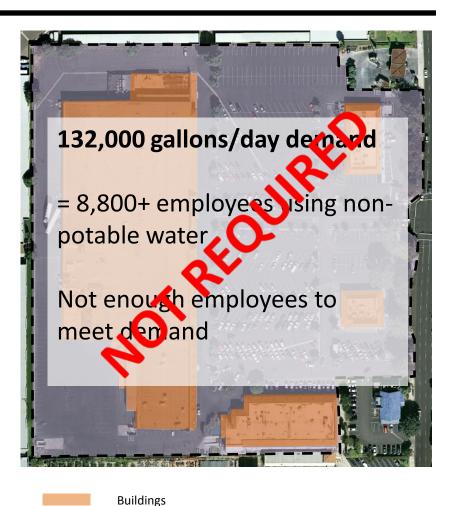

• How do you determine your demand?

Step 5d: Rainwater Harvesting Option

- References:
 - Outdoor Demand-
 - Water Efficient Landscape Ordinance AB1881 <u>http://www.water.ca.gov/wa</u> <u>teruseefficiency/landscapeor</u> <u>dinance/</u>
 - WUCOLS Water Use Classification of Landscape Species, UC Davis
 - Indoor Demand
 - *"Waste not, Want not..."* Report, Pacific Institute, 2003
 - Use site specific Information if available

Asphalt

Step 5d: Rainwater Harvesting Option


- Determining Demand
 - No outdoor demand on site
 - Indoor Demand
 - Using Pacific Institute information, average nonpotable per capita use per day for commercial buildings (for employees) ~ 15 gallons
 - To meet demands, would need 8,800+ employees using non-potable water

Step 5d: Rainwater Harvesting Option

- Determining Demand
 - No outdoor demand on site
 - Indoor Demand
 - Using Pacific Institute information, average nonpotable per capita use per day for commercial buildings (for employees) ~ 15 gallons
 - To meet demands, would need 8,800+ employees using non-potable water

Asphalt

Geosyntec[▷] 40

Step 5d: Selecting and Sizing BMPs Rainwater Harvesting and Evapotranspiration BMPs

- **Rainwater Harvesting** Option
- **Evapotranspiration Option: Green Roof**

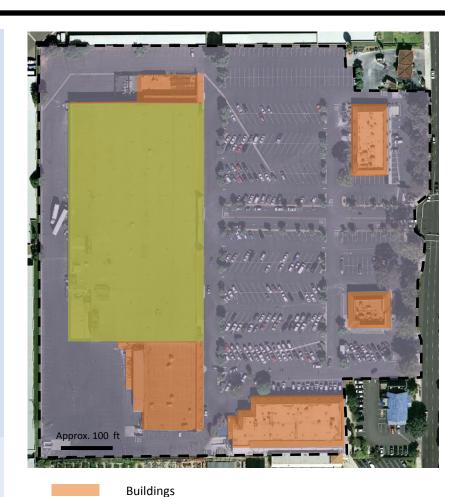
41

consultants

Green Roof

Step 5d: Evapotranspiration Option

- Area considered pervious where green roof (ET- 1) is located
- Adding a green roof changes:
 - A_{retain} calc (Step 5b)
 - V_{retain} calc (Step 5c)
 - EIA limit does not change = 0.6 Acres
 - Site: 12.2 Acres; 95%
 Impervious
 - Adding 2.5 Acre Green
 Roof (100% pervious)


Green Roof

Step 5d: Evapotranspiration Option

- New A_{retain}/V_{retain}:

 New A_{retain} = (12.2 acres)*(0.95) 2.5 acres 0.6 acres
 - A_{retain} = 8.5 Acres
 - - V_{retain} = 0.5 acre-feet

Asphalt

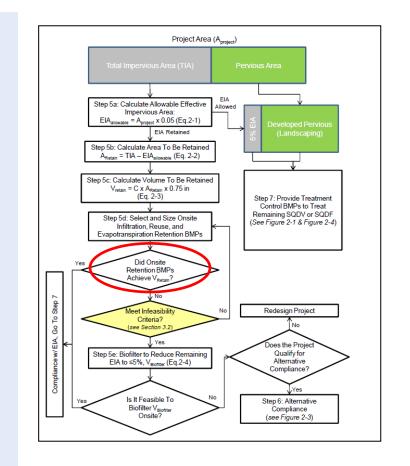
Green Roof

Geosyntec[▷] 43

Step 5d: Evapotranspiration Option

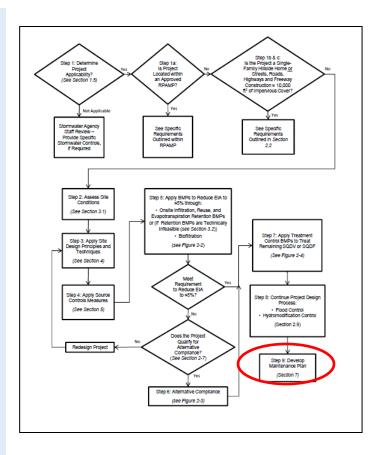
- Like Option 1, determine drainage areas for other proposed BMPs
 - TCM for driveway (Step 7 to determine TCM)
 - Infiltration BMPs should be used for rest of site
- Calculate SQDV for non-TCM BMPs

• $\sum SQDV_{sub-areas} \ge V_{retain}$



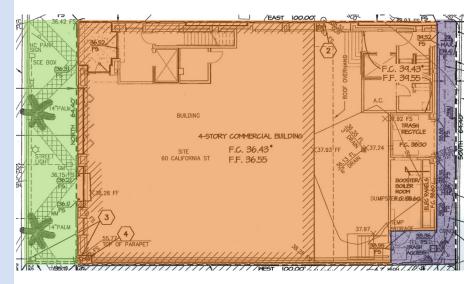
Step 5d: Selecting and Sizing BMPs

- Infiltration Option 1: Distributed Bioretention


 Can meet EIA
- Infiltration Option 2: Permeable Pavement
 - Can meet EIA
- Rainwater Harvesting Option
 Not enough demand
- Evapotranspiration Option: Green Roof
 - Can meet EIA with infiltration
 BMPs retaining rest of site

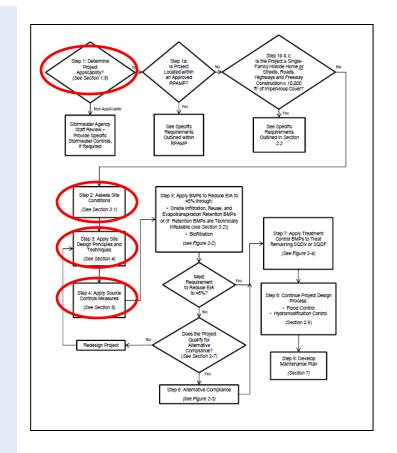
Step 9: Develop Maintenance Plan

- Submit Maintenance Plan
 - Site Map
 - Baseline Descriptions of BMPs
 - Spill Plan
 - Facility Changes
 - Training
 - Basic Inspection and Maintenance Activities
 - Future Revisions of Pollution Mitigation Measures
 - Monitoring and Reporting Program



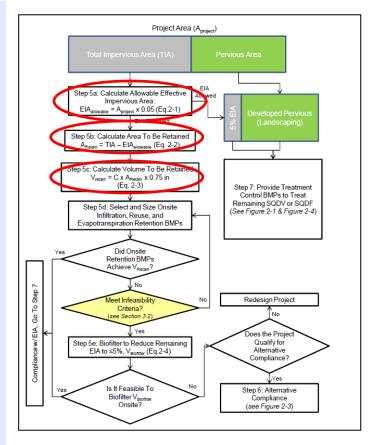
Scenario 2: Commercial/ Mixed Use

- **Project Information:**
 - Small lot line to lot line redevelopment
 - Commercial/ Mixed-Use
 - Commercial area along California Street
 - -7,320 ft² (<0.2 ac)
 - -90% Impervious

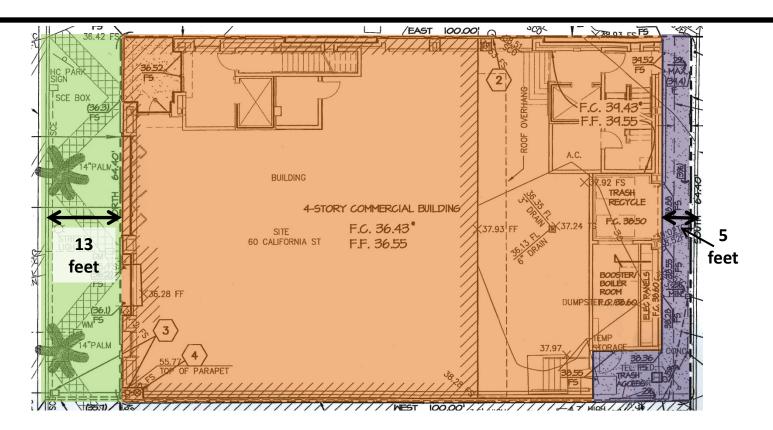


Flow Chart Steps 1-4

- Step 1: Project meets Applicability
- Step 2: Site Conditions
 Soil Type 4
- Step 3: Apply Site Design Principles
- Step 4: Apply Source
 Control Measures



Flow Chart Step 5a – 5c


- Step 5a: Calculate EIA

 EIA = 7,320 ft² *0.05 = 370 ft²
- Step 5b: Calculate A_{retain} $-A_{retain} = 6,560 \text{ ft}^2 - 370 \text{ ft}^2$ $= 6,190 \text{ ft}^2$
- Step 5c: Calculate V_{retain} $-V_{retain} = 370 \text{ ft}^3$
- Next: Step 5d Select and size BMPs

Step 5d: Select and Size BMPs

Landscaped Area Building Area Concrete Area

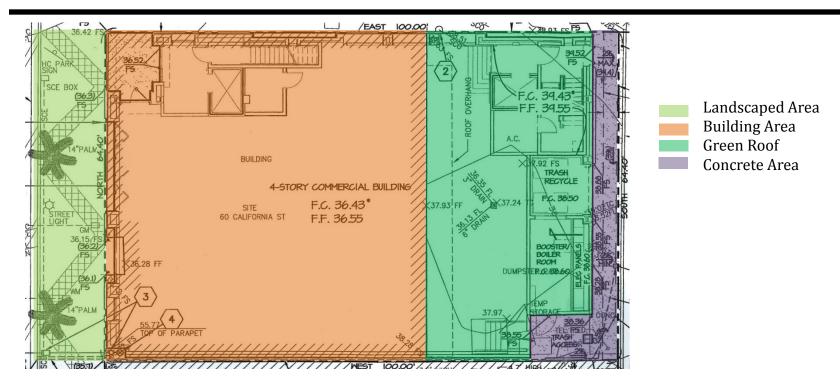
- Infiltration BMPs must be set back at least 8 feet from building foundations

Step 5d: Selecting and Sizing BMPs Infiltration BMPs

ВМР	Possible	Not Possible/ Recommended	Notes
INF-1: Infiltration Basin		x	No space within site
INF-2: Infiltration Trench		X	Not enough space for trench/ safety concerns
INF-3: Bioretention		x	Available area is too small to implement bioretention (including side slopes)
INF-4: Drywell		x	Drywells may fit within site constraints, but would have to be located directly adjacent to street, which is not recommended.
INF-5: Permeable Pavement		x	No pavement location located greater than 8 feet from building foundation
INF-6: Proprietary Infiltration		x	No large area available for underground proprietary infiltration

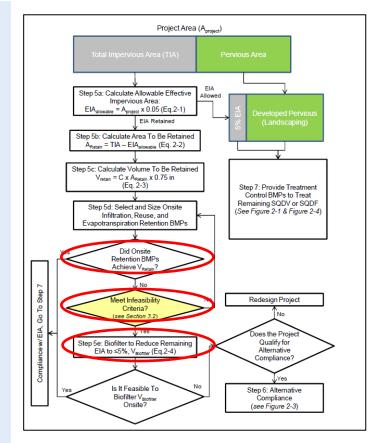
Step 5d: Selecting and Sizing BMPs RWH/ET BMPs

BMP	Recommended	Possible	Not Recommended	Notes
RWH-1: Rainwater Harvesting		х		Possible to capture runoff from roof and use for non-potable water demand <i>IF</i> there is enough demand
ET-1: Green Roof		х		Possible to install green roof on building but this option is not required
ET-2: Hydrologic Source Controls		Х		Possible to implement some hydrologic source controls



Step 5d: Selecting and Sizing BMPs Rainwater Harvesting Option

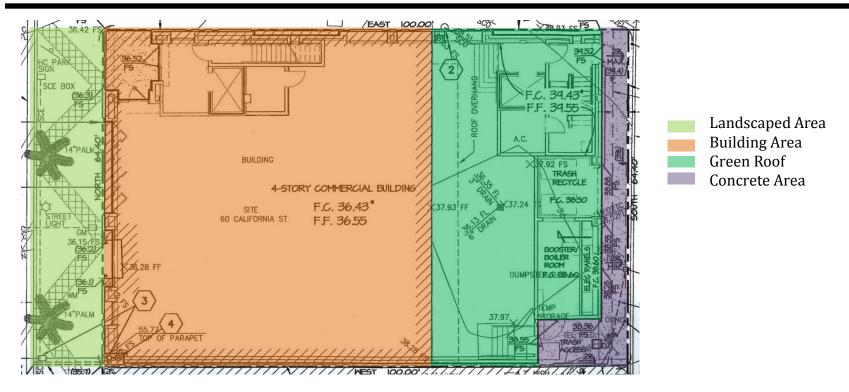
- Rainwater Harvesting Option
- d_{design} = 1.4 inches
- RWHDV = 690 ft^3
- Daily Demand = [690 ft³/(72 hrs/24 (hrs/day))]*7.5 (gal/ft³) = 1,700 gallons/day
- Pacific Institute = 15 gal/employee/day
 ~110 employees needed to meet demand
- RWH is possible depending on occupancy and should be further investigated



- Install Green Roof (ET-1) on lower portion of Roof
 - Aesthetic benefits
 - Counts as pervious area
- Implement Hydrologic Source Controls (ET-2) for impervious areas within landscaped area

- Green Roof/ HSC Option
 - Green Roof = 2050 ft^2
 - New $A_{retain} = (6560 \text{ ft}^2 2050 \text{ ft}^2)$ - 370 ft² = 4,140 ft²
- Impervious area in landscaping treated by HSCs
 - 85 ft² treated by HSCs with 1:1 pervious to impervious ratio
 - $d_{HSC} = 0.5$ inches
 - See ET-2 section for determining d_{HSC}
 - Design storm = 0.75 in 0.5 in = 0.25 inches

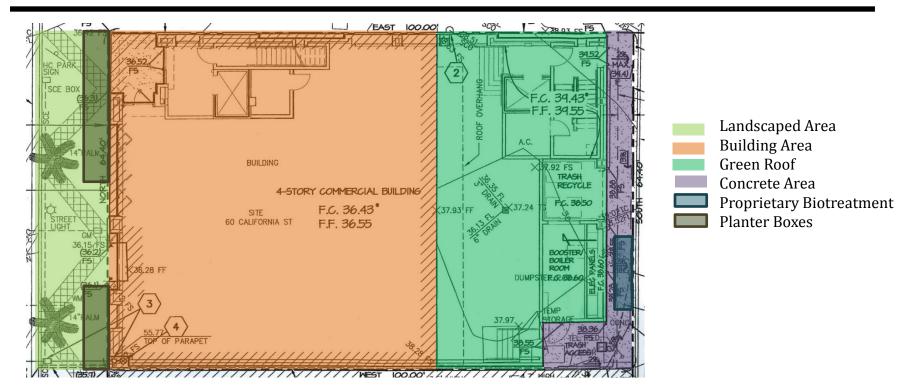
- New V_{retain} = C*{[(A_{retain} A_{HSC})*0.75 in)] + [A_{HSC}* 0.25 in]}
 - $-V_{retain} = 0.95^{*}[(4,140 \text{ ft}^2 85 \text{ ft}^2)^{*}(0.75 \text{ in}/12 (in/ft))] + [85 \text{ ft}^{2*}(0.25 \text{ in}/12 (in/ft))]\}$


$$-V_{retain} = 240 \text{ ft}^3$$

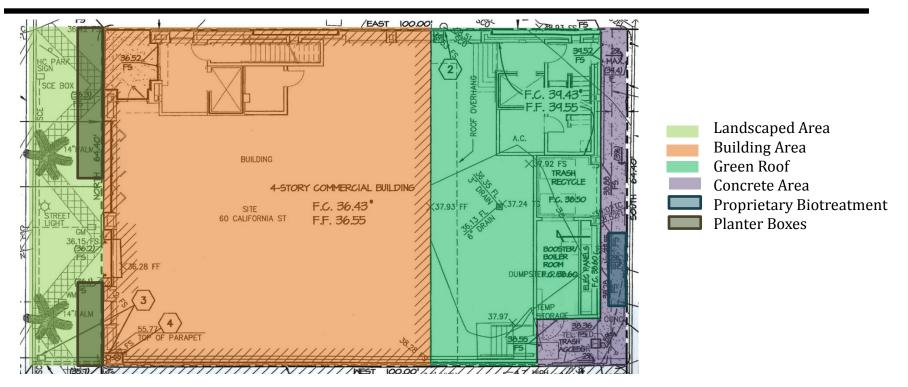
- Infiltration BMPs not possible due to site constraints
 - Step 5e: Biofilter to reduce remaining EIA to \leq 5%

Step 5e: Biofilter to Reduce Remaining EIA to $\leq 5\%$

- Determine biofilter volume:
 - V_{biofilter} = (V_{retain} V_{achieved})*1.5
 V_{biofilter} = (240 ft³)*1.5 = 360 ft³

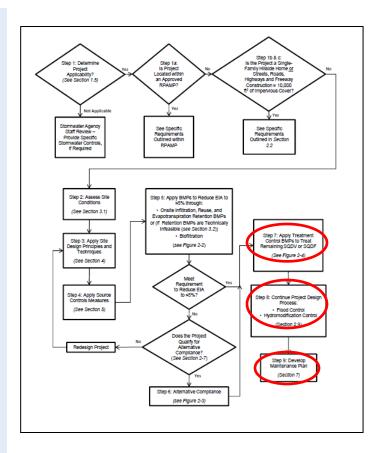

ВМР	Recommended	Possible	Not Recommended	Notes
BIO-1: Bioretention with Underdrain		х		Possible to fit bioretention with underdrain within landscaped area
BIO-2: Planter Box	x			Planter boxes are recommended for this site and can be placed next to building
BIO-3: Vegetated Swale			х	No space within site
BIO-4: Vegetated Filter Strip			х	No space within site
BIO-5: Proprietary Biotreatment	x			Proprietary biotreatment is a good option with space constraints

58


Step 5e: Biofilter to Reduce Remaining EIA to $\leq 5\%$

- Biofilter Option:
 - Proprietary biotreatment to treat concrete alley SQDF
 - Sized per manufacturer flow rate
 - Planter boxes to treat roof area

Step 5e: Biofilter to Reduce Remaining EIA to $\leq 5\%$

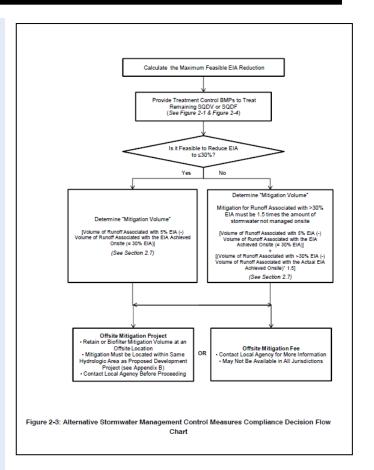


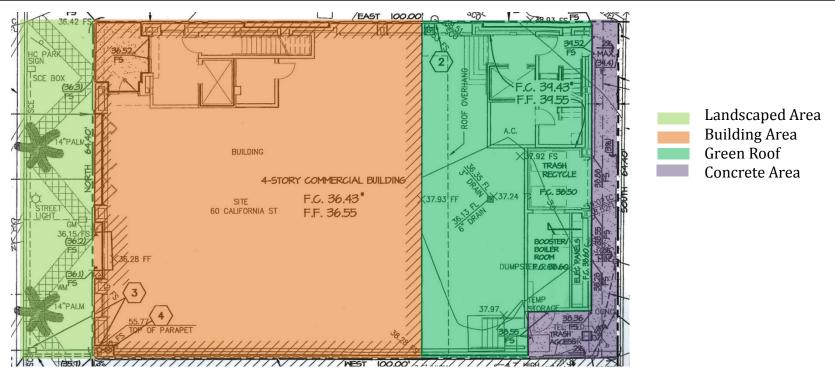
- Planter boxes treat roof SQDV (per sizing procedure for BIO-2 in TGM):
 - $A_{req} = 220 \text{ ft}^2$
 - \bullet PB₁ sized at 5 ft x 29 ft; PB₂ sixed at 5 ft x 15 ft

Geosyntec[▶]

consultants

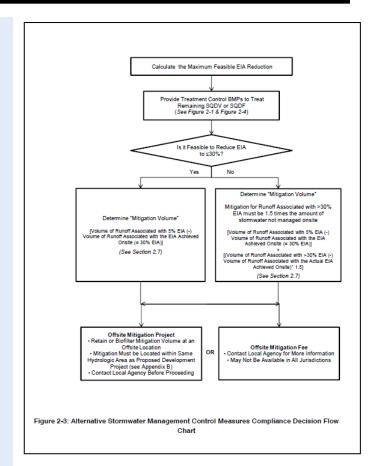
- Size planter boxes for roof area per sizing criteria in TGM
- For proprietary biotreatment, refer to manufacturer instructions
 - Feasible to biofilter V_{biofilter}
 onsite
 - Proceed to Step 7, 8, 9




Alternative Compliance

- What if V_{biofilter} cannot be treated on-site?
 - For example: area on-site cannot be used for proposed biofilters
 - Alternative Compliance (Step 6)
 - See Section 2.7
 - Redevelopment projects qualify
- Provide treatment control BMPs to treat remaining SQDV or SQDF
 - Waterbodies in watershed Impaired for Pathogens
 - Proprietary Biofiltration (BIO-5), Cartridge Media Filters (TCM-5)
 can be used

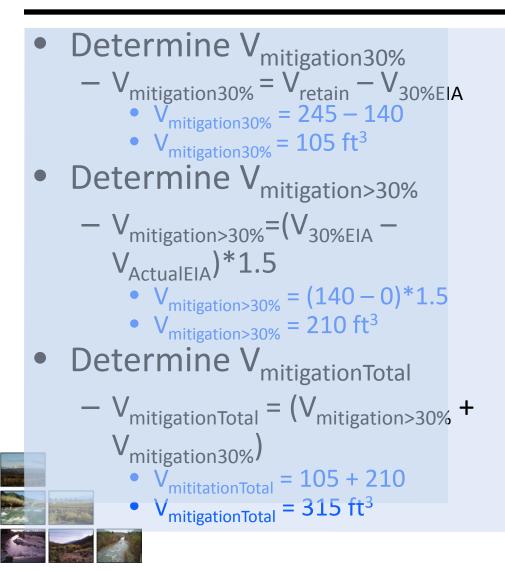
Step 5e: Biofilter to Reduce Remaining EIA to $\leq 5\%$

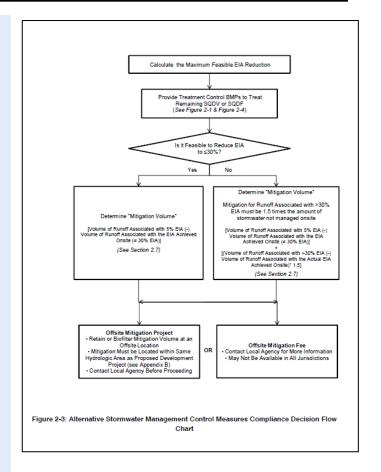

- Roof/ Alley cannot be biofiltered
 - 4,410 ft² of EIA (limit: 370 ft²)
 - First: apply TCM sized for remaining SQDV/SQDF (TCM-5 recommended given space constraints)

consultants 63

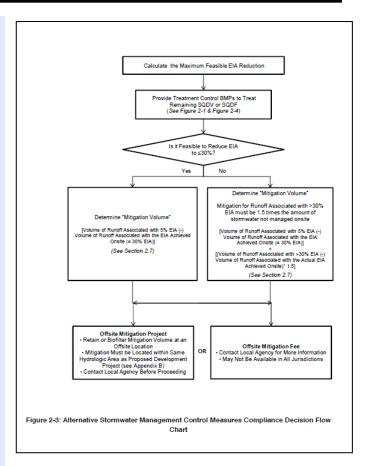
Geosyntec^D

Step 6: Alternative Compliance


- Feasible to reduce EIA to ≤ 30%?
 - $-4,410 \text{ ft}^2 / 7,325 \text{ ft}^2 = 62\% \text{ EIA}$
 - Note that EIA = IMP
 - No
- Determine A_{30%EIA}
 - $A_{30\% EIA} = (IMP 30\%) * A_{project}$
 - A_{30%EIA}= (0.62 0.3)*7,325
 - A_{30%EIA} = 2,340 ft²
- Determine V_{30%EIA}
 - $-V_{30\% EIA} = 0.95*2,340*0.75/12$
 - $V_{30\% EIA} = 140 \, \text{ft}^3$



Step 6: Alternative Compliance



Alternative Compliance

- Retain or Biofilter Mitigation Volume at an Offsite Location
 - Must be located w/in same hydrologic area as proposed development

OR

Offsite Mitigation Fee

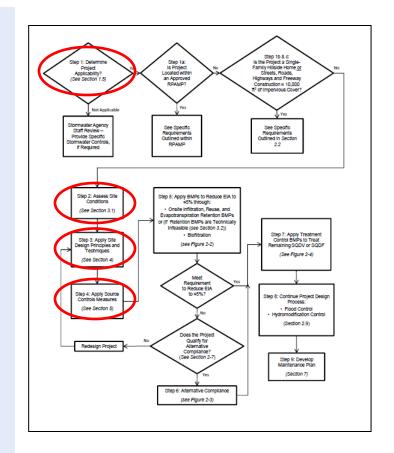
Step 6: Alternative Compliance

Landscaped Area Building Area Green Roof Concrete Area

60 California Site (*Image from Google Earth Pro™, June 2011*)

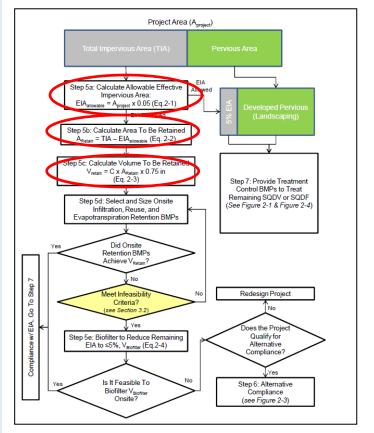
Scenario 3: Residential

- Project
 Information:
 - Condominiums/
 Single-Family
 housing
 - Some open space available in development area
 - Development area (shaded) = 8.5 Ac
 - 65% Impervious



Open Area Residential Area Road Area

Flow Chart Steps 1-4


- Step 1: Project meets Applicability
- Step 2: Site Conditions
 Soil Type 1
 - Infiltration BMPs not recommended
- Step 3: Apply Site Design Principles
- Step 4: Apply Source
 Control Measures

Flow Chart Step 5a – 5c

- Step 5a: Calculate EIA
 - $-EIA = 8.5 ac^* 0.05 = 0.4 ac$
 - -Step 5b: Calculate A_{retain}
 - $-A_{retain} = 5.5 ac 0.4 ac = 5.1 ac$
- Step 5c: Calculate V_{retain} - V_{retain} = 0.30 ac-ft
- Next: Step 5d Select and size BMPs

Step 5d: Selecting and Sizing BMPs Infiltration, RWH, ET BMPs

BMP	Recommended	Possible	Not Possible/ Recommended	Notes
INF-1 through INF-6			х	Ventura Soil Type 1
RWH-1: Rainwater Harvesting		x		Possible to capture runoff from roofs and use for non-potable water demand <i>IF</i> there is enough demand
ET-1: Green Roof			X	Possible to install green roofs on single family homes but is often prohibitively expensive
ET-2: Hydrologic Source Controls		X		Possible to implement some hydrologic source controls throughout project area

Step 5d: Selecting and Sizing BMPs RWH BMPs

- Rainwater Harvesting Option
- d_{design} = 1.4 inches
- RWHDV = 0.6 ac-ft
- Daily Demand = [0.6 ac-ft/(72/24)]* 325,851 (gal/ac-ft)
 - Needed demand=
 61,300 gallons/day

Open Area Residential Area Road Area

Step 5d: Selecting and Sizing BMPs RWH BMPs

- Indoor Demand
 - 18.5 gal/resident/ day (Pac. Inst.)
 - ~3,300 residents
 needed to meet
 demand (indoor)
 - 64 homes planned
- Outdoor demand
 - ~300 2,000¹ gal/ irrigated acre per day (depending on plants used)
 - Need 30+ acres to
 be irrigated

Open Area Residential Area Road Area

¹ These demand numbers are meant for discussion purposes only and should not be used for irrigation demand calculations.

Step 5d: Selecting and Sizing BMPs RWH BMPs

- Indoor Demand
 - 18.5 gal/resident/ day (Pac. Inst.)
 - ~3,300 residents
 needed to meet
 demand (indoor)
 - 64 homes planned
- Outdoor demand
 - ~300 2,000¹ gal/ irrigated acre per day (depending on plants used)
 - Need 30+ acres to
 be irrigated

Open Area Residential Area Road Area

¹ These demand numbers are meant for discussion purposes only and should not be used for irrigation demand calculations.

Step 5d: Selecting and Sizing BMPs ET BMPs

- Hydrologic Source Controls
 - Can direct roof runoff to pervious areas on residential lots
 - Residential lots are 60% Impervious
 - Assume half of pervious area can receive roof runoff
 - Pervious to
 Impervious ratio =
 20%/ 60% = 0.3

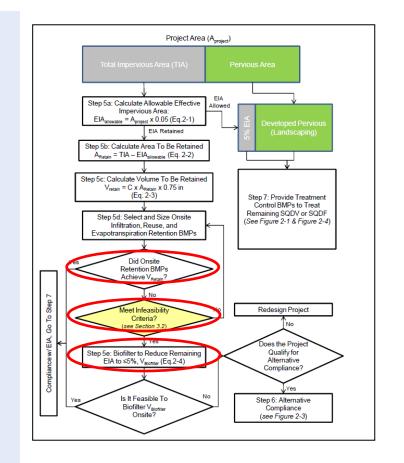
 $d_{HSC} = 0.15$ inches

Open Area Residential Area with Hydrologic Source Controls Road Area

Geosyntec[▷] ₇₅

Step 5d: Selecting and Sizing BMPs ET BMPs

- Calculate new V_{retain} accounting for hydrologic source controls
 - V_{retain} = 0.95 * {[(5.1 - 3.5) * (0.75/12)] + [3.5 * (0.6/12)]}
 - $V_{retain} = 0.26 \text{ ac-ft}$
- Retention options exhausted
- Next step Biofilter at 150%


Open Area Residential Area with Hydrologic Source Controls Road Area

Flow Chart Step 5a – 5c

- Calculate $V_{\text{biofilter}}$ $-V_{\text{biofilter}} = (V_{\text{retain}} - V_{\text{biofilter}}) * 1.5$ $-V_{\text{biofilter}} = 0.26 * 1.5 = 0.39 \text{ ac-ft}$
- Select biofiltration BMPs

ВМР	Recommended	Possible	Not Recommended	Notes
BIO-1: Bioretention with Underdrain	x			Bioretention with underdrain is a good option for the site
BIO-2: Planter Box	x			Planter boxes can also be used next to buildings on- site
BIO-3: Vegetated Swale			Х	Does not fit within site layout
BIO-4: Vegetated Filter Strip			Х	Does not fit within site layout
BIO-5: Proprietary Biotreatment		X		Proprietary biotreatment can be used for this site

78

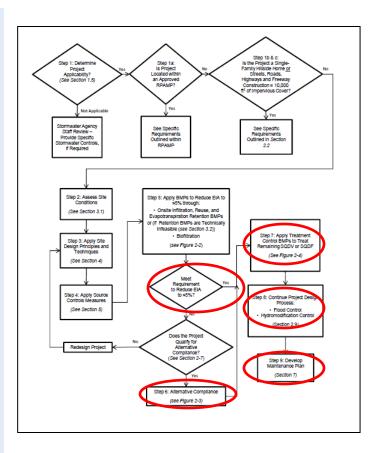
- Distributed biofiltration BMPs or "onsite regional"?
 - Determine area needed for bioretention BMPs
 - A_{req} = 0.15 ac (includes 20% more area for side slopes, etc)
 - Open space areas
 ~0.4 acres

Open Area Residential Area with Hydrologic Source Controls Road Area Bioretention BMPs

- Distributed biofiltration BMPs or "onsite regional"?
 - Determine area needed for bioretention BMPs
 - A_{req} = 0.15 ac (includes 20% more area for side slopes, etc)
 - Open space areas
 ~0.4 acres

Open Area Residential Area with Hydrologic Source Controls Road Area Bioretention BMPs

- Since enough area is available in open space areas, "onsite regional" biofilter BMPs are probably a better option
 - M & O
 - Cost
- $\sum V_{BMPs} \ge V_{biofilter}$


Open Area Residential Area with Hydrologic Source Controls Road Area Bioretention BMPs

Flow Chart Steps 7-9

- Step 6: Alternative Compliance does not apply
- Step 7: If there is project EIA, apply TCMs
 - Recommend sizing complete project area for biofiltration so there is no EIA
 - Additional area (i.e., after A_{retain} has been biofiltered) does not need to be biofiltered at 1.5 times V_{retain}
- Continue to Steps 8 and 9

Questions?

