Sizing Worksheet - BIO-1 Biofiltration/BIO-2 Planter Box with Underdrain

Designer: Project Proponent: Date: Project: Location: Type of Vegetation:			
Date: Project: Location:			
Project: Location:			
Location:			
Type of Vegetation:			
77			
Pretreatment Feature:			
Outflow Collection:			
Step 1: Determine water quality design volume			
1-1. Enter Project area (acres), Aproject			
If this BMP captures runoff from a portion of the project area, Aproject =		acres	
enter the tributary area			
1-2. Enter Project impervious fraction, <i>Imp</i> (e.g. 60% = 0.60) Imp=			
1-3. Determine pervious runoff coefficient using <u>Table C-1</u> , $C_p =$			
1-4. Calculate runoff coefficient,	C =		
$C = 0.95*imp + C_p (1-imp)$			
1-5. Enter design rainfall depth of the storm (in), P_i $P_i =$		in	
1-6. Calculate rainfall depth (ft), $P = P_i/12$		ft	
1-7. Calculate water quality design volume (ft³)		r. 3	
$SQDV=43560 \bullet C^*P^*A_{project}$		ft ³	
Step 2: Determine the design percolation rate			
2-1. Enter the design saturated hydraulic conductivity of the			
amended filter media (2.5 in/hr recommended rate), K_{design} $K_{design} =$		in/hr	
Step 3: Calculate Bioretention/Planter Box surface area			
3-1. Enter water quality design volume (ft ³), <i>SQDV</i> SQDV =		ft ³	
3-2. Enter design saturated hydraulic conductivity (in/hr), $K_{design} = K_{design}$		in/hr	
3-3. Enter ponding depth (max 1.5 ft for Bioretention, 1 ft for Planter Box) above area, d_p $d_p = d_p = d_p$		ft	
3-4. Calculate the drawdown time for the ponded water to filter through media (hours),			
$t_{ponding}^* = (d_p/K_{design}) \times 12$ $t_{ponding} = (d_p/K_{design}) \times 12$		hrs	
*If tponding exceeds 48 hours, reduce surface ponding depth or increase media Kdesign.			

3-5. Calculate the depth of water (ft) filtered, $d_{filtered} = Minimum \left[\frac{K_{design} \times T_{routing}}{12 \ in/ft}, d_p \right]$ where $T_{routing}$ = storm duration that may be assumed for routing calculations; this should be assumed to be 3 hours unless rationale for an alternative assumption is provided	dfiltered =	ft	
3-6. Calculate the infiltrating surface area as follows (ft ²); account for infiltrating 1.5 times SQDV value. $A_{req} = 1.5 \times SQDV/(d_p + d_{filtered})$	A _{req} =	ft²	
Step 4: Calculate Bioretention Area Total Footprint			
4-1. Calculate total footprint required by including a buffer for side slopes and freeboard (ft ²) [A _{req} is measured at the as the filter bottom area (toe of side slopes)], A_{tot}	A _{tot} =	ft²	
Step 5: Calculate Underdrain System Capacity			
To calculate the underdrain system capacity, continue through steps 5-1 to 5-7.			
5-1. Calculated filtered flow rate to be conveyed by the longitudinal drainpipe, $Q_f = K_{design} \times A_{req}/43,200$	Q _f =	cfs	
5-2. Enter minimum slope for energy gradient, Se	S _e =		
5-3. Enter Hazen-Williams coefficient for plastic, C _{HW}	C _{HW} =		
5-4. Enter pipe diameter (min 4 inches), D	D =	in	
5-5. Calculate pipe hydraulic radius (ft), $R_h = D/48$	$R_h =$	ft	
5-6. Calculate velocity at the outlet of the pipe (ft/s), $V_p = 1.318 C_{HW} R_h^{0.63} S_e^{0.54}$	<i>V_p</i> =	ft/s	
5-7. Calculate pipe capacity (cfs),			
	I	cfs	